NoRHDia- Project-Preparation-Meeting June 26, 2007 GSI, Darmstadt

HETEROEPITAXIAL DIAMOND ON IR/YSZ/SI(001): A NEW MATERIAL FOR DETECTOR APPLICATIONS

Matthias Schreck

Universität Augsburg, Institut für Physik,

D-86135 Augsburg (Germany)

EPITAXIAL DIAMOND FILMS ON Si(001)

Surface: coplanar, azimuthally oriented {001}facets

cross section: columnar growth

grain coarsening

DIFFERENCES IN THE TEXTURE DEVELOPMENT: DIAMOND ON Si \Leftrightarrow DIAMOND ON Ir/SrTiO₃

INTERNAL DEFECT STRUCTURE: TRANSMISSION ELECTRON MICROSCOPY (TEM)

FIELD EFFECT TRANSISTORS REALISED ON Dia/Ir/SrTiO₃(001) SAMPLES

WHAT IS THE IDEAL SUBSTRATE FOR THE GROWTH OF LARGE AREA IRIDIUM FILMS AND THE GROWTH OF DIAMOND??

- Oxide crystals facilitate the deposition of single crystal metal layers
- Some are available in large size at affordable costs (e.g. sapphire)
- However: The fit of thermal expansion coefficients is poor

OXIDE BUFFER LAYERS ON SILICON AS HIGH-K DIELECTRICS & EPITAXIAL GROWTH SURFACE

R. A. McKee, F. J. Walker, and M. F. Chisholm: *Crystalline Oxides on Silicon: The First Five Monolayers*, Phys. Rev. Lett. 81 (1998) 3014.

Deposition method:

Molecular beam epitaxy (MBE)

A. Bardal, M. Zwerger, O. Eibl, J. Wecker, Th. Mathee, $YBa_2Cu_3O_{7-\delta}$ films on Si with Ystabilized ZrO_2 and Y_2O_3 buffer layers: High resolution electron microscopy of the interfaces Appl. Phys. Lett. 61 (1992) 1243.

Deposition method:

Pulsed laser deposition (PLD)

THICK DIAMOND FILMS ON Ir/YSZ/Si(001)

HOW IS THE HUGE LATTICE MISFIT ACCOMODATED IN THE TWO CASES?

1) Dia/Ir/SrTiO₃/Si(001)

(45° rotation of $SrTiO_3$ vs. Si)

(cube on cube)

Current status:

4 inch wafers of Ir/YSZ/Si(001) have been realized

THE SETUP FOR THE GROWTH OF LARGE AREA EPITAXIAL METAL LAYERS ON SILICON

Implementation of RHEED for in-situ study of growth of metal films

LARGE AREA EPITAXIAL METAL LAYERS ON SILICON: CURRENT STATE

Neither YSZ nor Ir --

But indispensible for successful film growth !

Ir/YSZ/Si(001)

