

CarADD BeamCal for the ILC Detector

GSI, 26th June 2007

- Very forward region of the detectors for the International Linear Collider
- > BeamCal requirements
- > Results from previous investigations
- > Plans for the future
- > Conclusions

Very Forward Region of the ILC Detectors

The purpose of the instrumentation of the very forward region is:
 Hermeticity: increase the coverage to polar angles > 5mrad
 Optimize Luminosity

06/26/2007

The Challenges for BeamCal

Creation of beamstrahlung at the ILC

> e+e- pairs from beamstrahlung are deflected into the BeamCal

≻15000 e⁺e⁻ per BX

=> up to 10 MGy per year strongly dependent on the beam and magnetic field configuration

=> radiation hard sensors

> Detect the signature of single high energetic particles on top of the background.

=> high dynamic range/linearity

r_{res} (May/a) r_{res} r_{re

Chemical Vapour Deposited Diamonds

- CVD diamonds are an interesting material:
 - *radiation hardness
 (e.g. LHC pixel
 detectors)
 - advantageous
 properties like: high
 mobility, low ε_R = 5.7,
 thermal conductivity
 - *availability on
 wafer scale

Linearity Test at CERN PS

Response of diamond sensor to beam particles (no preamplifier/attenuated)

Photomultiplier signals

Hadronic beam, 3 & 5 GeV Fast extraction mode $\sim 10^4$ -10⁷ particles / ~ 10 ns

06/26/2007

30% deviation from a linear response for a particle fluence up to ~106 MIP/cm²

The deviation is at the level of the systematic error of the fluence calibration.

06/26/2007

High Dose Irradiation

CCD = $Q_{meas}/Q_{induced} \times thickness$ Bias voltage = 400V \approx > 1 V/ μ m

After absorbing 7MGy the CVD diamonds are still operational.

BUT large fluctuations in the signal size.

E6_B2 CCD vs E-field

after 1.5 MGy

after 7 MGy

After Irradiation: IAF Sample

06/26/2007

C.Grah: CarADD - BeamCal for the ILC Detector

11

Summary

- > For the BeamCal of the ILC detector we need:
 - > radiation hard sensors (proven for diamond)
 - > linear over a large dynamic range (proven for diamond)
 - > available on wafer scale (so far only polycrystalline CVD diamond)
- Polycrystalline CVD diamonds lack the following requirements:

> stability and predictibility and sample to sample fluctuations.

- We therefore support the CarADD proposal and would like to contribute in the fields of:
 - Lab investigations (e.g. MIP spectra, IV measurements) of large area CVD diamond
 - > Testbeam investigations (linearity, radiation hardness)
 - Prototyping of full system (small scale BeamCal prototype)

http://www-zeuthen.desy.de/ILC/fcal/

We request:
*1 PhD for 3 years:
*travel costs for 3 years:
* consumables for 3 years:
50k
=> total

Contribution from DESY:
*FTE & consumables for 3 years: 200k