NoRHDia Workshop 2008 09 -10 June 2008

RECENT PROGRESS IN THE FIELD OF DIAMOND HETEROEPITAXY ON IRIDIUM

Matthias Schreck

Stefan Gsell, Martin Fischer, Rosaria Brescia, Bernd Stritzker Universität Augsburg, Institut für Physik, D-86135 Augsburg (GERMANY)

OUTLINE

Motivation

- Heteroepitaxy of diamond: a brief review
- > Bias enhanced nucleation (BEN)
- Diamond films on Iridium: state of the art
- Scaling-up: state of the art
- > Understanding BEN on Iridium: A model summarizing

the major observations

MOTIVATION

Heat spreaders

Source: E6

Coatings on tools for drilling and milling (wear reduction)

Windows for high power CO₂-lasers

Source: FHG-IAF Freiburg

Is there any need for single crystals?

WHAT'S THE NEED FOR SINGLE CRYSTALS? (LIMITING PROPERTIES OF POLYCRYSTALLINE FILMS)

Mechanical properties

Electrical properties

Strength: Charge carrier mobilities (holes): Single crystale: 3800 cm²/Vs Theoretical values: 120-190 GPa **Diamond detectors** $-40 \text{ cm}^2/\text{Vs}$ Diamond single crystals (exp.): 2.8 90 100 110 60 70 80 10 -50 bn Si(001): Highly selected IIa type, Triniti (Russia) (200 µm) 2000 Ref. [10.1] 1800 Ref. [10.20] Ref. [10.21] 1600 Ref. [10.22] 10¹⁶ Commercially available IIa type (200 µm) Counts (a.u.) Ref. [10.23] Strength (MPa) 1400 From: B. Dis 1200 10¹⁴ C. Wild: Low ₹ 10¹³ 1000 Pressure Sv CVD (CEA), (25 µm) 10¹² Diamond Sp 800 1011 (1998)600 - 10¹⁰ CVD (commercial-detector grade) 400 109 (300 µm - polished) 200 50 60 70 80 90 100 110 200 400 600 0 10 20 800 1000 /T, K⁻¹) Collection efficiency (%) Thickness (µm) 62 (1993) 2347 Bergonzo et al., Diamond Relat. Materials 10 (2001) 631.

HOMOEPITAXY

2 mm

WIRED (Sept. 2003) Linares (Apollo).... the company is producing 10-millimeter wafers but predicts it will reach an inch square by year's end and 4 inches in five years.

HETEROEPITAXY OF DIAMOND: SEARCHING FOR THE IDEAL SUBSTRATE MATERIAL

- (a) c-BN(001)
- (b) c-BN(111)
- (c) Al₂O₃(0001)
- (d) Ni(001)
- (e) Ni(111)
- (f) Pt(111)
- (g) Si(001)
- (h) β -SiC(001)
- (i) Ir/MgO(001)

HETEROEPITAXY OF DIAMOND: SEARCHING FOR THE IDEAL SUBSTRATE MATERIAL

First Publication	Current state of the art
Stoner & Glass 1992	Tilt: 0.6° Twist: ~2.5°
Jiang & Klages 1992	Tilt: ~ 1° Twist: ~4°
Tachibana, Kobashi,	Tilt: 1.1° Twist: -
Shintani 1996	
Ohtsuka, Suzuki,	Tilt: 0.16° Twist: 0.34°
Sawabe, Inuzuka 1996	
	First PublicationStoner & Glass 1992Jiang & Klages 1992Tachibana, Kobashi,Shintani1996Ohtsuka, Suzuki,Sawabe, Inuzuka 1996

Further materials: c-BN, Cu, Ni, Co, Re, TiC, Ni₃Si, Ni₃Ge, Al₂O₃

BIAS ENHANCED NUCLEATION (BEN)

Microwave plasma ball

Substrate

BIAS ENHANCED NUCLEATION (BEN)

COMPARISON: DIAMOND ON Si⇔DIAMOND ON Ir/SrTiO₃

The film surface The cross section Diamond on silicon Diamond on $Ir/SrTiO_3(001)$ 10 µm

INTERNAL DEFECT STRUCTURE: TRANSMISSION ELECTRON MICROSCOPY (TEM)

The technological challenge: finding an appropriate multilayer system

OXIDE SINGLE CRYSTALS vs. BUFFER LAYERS ON SILICON

Requirements:

a) Growth of single crystal iridium films

b) Thermally compatible with diamond

Dia/Ir/YSZ/Si(001)

IRIDIUM ON SILICON VIA SrTiO₃ BUFFER LAYERS

Epitaxial iridium directly on silicon not possible → Oxide buffer layers between silicon and iridium

MBE-System (Prof. D. Schlom, Pennsylvania State University)

SrTiO₃ buffer layer by MBE growth (mosaicity: tilt/twist: 0.43°/1.36°) For details: L.V. Goncharova et al., J. Appl. Phys. 100, 014912 (2006)

MOSAIC SPREAD OF THE IR FILMS

Rocking curve

Azimuthal scan

➔Mosaicity (angular spread) of the iridium much lower than that of the underlying oxide buffer layer

Gsell et al., Appl. Phys. Lett., **91**, 061501(2007).

2. THE ALTERNATIVE CONCEPT: YSZ ON SI PREPARED BY PLD

Pulsed laser deposition (PLD) setup

KrF excimer laser

25 ns pulses of 850 mJ

Yttria stabilized zirconia (YSZ) film deposition:

- no removal of the silicon oxide
- ablation target: (ZrO_2) stabilized with Y_2O_3
- 5 x 10⁻² Pa oxygen (First 600 pulses without oxygen)
- substrate temperature: 825°C
- thickness: 20 nm (40 nm)

HETEROEPITAXIAL IRIDIUM ON YSZ/Si(001)

Rocking curve

Azimuthal scan

Order of magnitude lower mosaic spread for the iridium film than for the YSZ

MICROSTRUCTURE AND INTERFACE

Dislocation density of iridium: ~10¹¹ cm⁻²

Crystalline interface Ir/YSZ

Dislocation density of YSZ: ~10¹² cm⁻²

Cross section TEM micrograph

Crystalline quality of the iridium is significantly higher than that of the YSZ directly from the interface

→ Mechanism?

Mechanism I: averaging process during the coalescence of the iridium islands

Mechanism II: burying of defects

THICK DIAMOND FILMS ON Ir/YSZ/Si(001)

45 μm thick diamond film with

good adhesion to the substrate

WHAT IS THE BEST STOICHIOMETRY FOR YSZ BUFFER LAYERS?

10000

1000

100

10

10000

1000

100

10

10000

(<u>1</u>11) m

INTENSITY (arb. units) 0 10 10 1

INTENSITY (arb. units)

NTENSITY (arb. units)

111) mono

2 (of 3) different ablation targets

Laser plume During ablation

SEM images of Ir surfaces

SCALING-UP TO 4": YSZ

IRIDIUM WAFERS

Preparation of the iridium layer by e-beam evaporation on 4-inch YSZ/Si(001) wafers

GROWTH OF DIAMOND ON 4" Ir/YSZ/Si(001) WAFERS

Thickness: 40 µm

lowest values reported up to now

Matthias Schreck NoRHDia2008.ppt 24

IR(111): EXTREMELY LOW TWINNING RATIO Ir(111)/Al₂O₃(0001)

Why is Ir so much better than any other substrate?

=> Understanding BEN on Ir

Matthias Schreck NoRHDia2008.ppt 26

SPECIAL FEATURES OF DIAMOND ON IRIDIUM

Highest density of 10 nm

Cross section TEM image after 2 min growth

Dia/Si(001)

oriented grains

IT für PHYSIK

NUCLEATION ON SILICON vs. IRIDIUM

THE FATE OF DIAMOND GRAINS UNDER THE BIAS ENHANCED NUCLEATION CONDITIONS ON IRIDIUM

Diamond nucleation occurs under conditions under which diamond grains are etched!!!

CLASSICAL NUCLEATION THEORY

Nucleation under etching conditions contradicts classical nucleation theory

THE IRIDIUM SURFACE AFTER BEN

Bright domains in the SEM

Correspondence Domains ←→ Diamond islands??

Growth step 1 year later

What is the amount of carbon at the Ir surface after BEN?

CROSS SECTION TEM IMAGES OF BEN SAMPLE 1 & 2

→ A slit is clearly visible

→ On the flat sample: continuous with rather homogeneous thickness

→ Thickness: ~ 1 nm

The internal structure of the BEN layer?

- → Epitaxial iridium covering layer (preferentially on rough sample)
- ➔ Amorphous regions?!
- → Atomically resolved structures show only iridium's lattice constant

In addition: No diamond related spots in LEED or RHEED

X-RAY PHOTOELECTRON DIFFRACTION (XPD)

- no XPD C1s pattern in case of unsuccessful nucleation
- XPD C1s pattern similar to highly oriented polycrystalline diamond in case of successful BEN
- anisotropy values → compatible with diamond grains of 10 nm lateral size !!??

The topographic signature of the domains?

TOPOGRAPHIC SIGNATURE OF THE DOMAINS

Matthias Schreck NoRHDia2008.ppt 38

A MODEL DESCRIBING THE STRUCTURE OF THE BEN LAYER INCLUDING THE DOMAIN

- The layer formed during BEN consists of 3 different carbon phases
- Significantly lower density of the amorphous precursor phase

The temporal dynamics of pattern formation?

TEMPORAL DYNAMICS OF PATTERN FORMATION

→ domain formation (or dissolution) is a continuous process

SUMMARY

- Heteroepitaxial diamond growth: a promising concept for the realization of large area single crystal diamond layers
- Bias enhanced nucleation a powerful nucleation method
- **Iridium**, a unique material for the nucleation of diamond **SrTiO₃ and YSZ**: two alternative buffer layers to grow diamond diamond/Ir films on silicon
- New experiments on the **pattern formation ("domains")** during BEN on Ir
- A **model** was presented which can consistently explain a large variety of experimental observations

Thanks for your attention!

ACKNOWLEDGEMENT

Financial support: AMU Augsburg Deutsche Forschungsgemeinschaft EU Marie-Curie-Training Network "DRIVE" EU STREP "Nanomesh"

Cooperations:

- A. Bergmaier, G. Dollinger (TU München: ERD)
- P. Bernhard, Ch. Ziethen, G. Schönhense (Uni Mainz: XANES, PEEM, AES)
- D. Schlom (Pennstate University: SrTiO₃/Si)
- F. Phillipp (MPI Stuttgart: HRTEM)
- G. Benstetter, E. Lodermeier (FH Deggendorf: c-AFM)
- S. Berner, T. Brugger, J. Osterwalder, T. Greber (Uni Zürich: XPD)

