An Insight into
Radiation Tolerance of scCVD-DD
First Irradiations with
26MeV p and ~20MeV n

M. Pomorski, E. Berdermann, W. de Boer,
A. Furgeri, S. Mueller
GSI Darmstadt, Germany

4th NoRHDia Workshop at GSI, 08/06/2008
Aim of the Study

Novel Radiation Hard(?) Diamond Detectors for Hadron Physics
1. Introduction
 - Non Ionizing Energy Loss - NIEL
 - Radiation induced effects

2. Material and Methods
 - scCVD diamond
 - irradiation conditions - 26MeV p, ~20MeV n, on-line monitoring

3. Characterization
 - identification of radiation induced defects - optical characterization
 - dark current and TL
 - trapping time - TCT technique
 - trapping related phenomena - polarization, priming etc.
 - CCE and CCD of primed detectors

4. Summary

5. Outlook - How to proceed
NIEL - Non Ionizing Energy Loss in Diamond

Radiation damage at **LOW energy** dominated by elastic cross section. C-nuclei have factor two smaller Z than Si and higher displacement energy ($\approx 40 \text{eV} (?)$ vs 20 eV)

Radiation damage at **HIGH energy** dominated by inelastic cross section. C-nuclei smaller and more stable than Si. Diamond order of magnitude better than Silicon.
NIEL – Radiation induced effects

Silicon

- dark current $\rightarrow \alpha \Phi$ - NIEL scalable
- space charge $\rightarrow -\beta \Phi$ - depletion voltage
- charge trapping $\rightarrow 1/\tau$ - NIEL violation
- induced defects are mobile at RT - annealing

Diamond

Gap $\sim 5x$ silicon \sim at RT Diam \sim Si at 60K

- dark current - none or decreases if present
- space charge - none(?)
- charge trapping - yes \rightarrow space charge, pumping Polarization

pumping, priming \rightarrow 'Lazarus effect'

Induced defects are not mobile at RT
interstitials ~ 1.6 eV, vacancies ~ 2.3 eV
CCE and CCD

CCE - charge collection efficiency \(\text{CCE} = \frac{Q_{\text{coll}}}{Q_{\text{gen}}} \)

\[
Q_{\text{coll}} = Q_{\text{gen}} \tau_{e,h} / t_{tr-e,h} \left(1 - \exp\left(-\frac{t_{tr-e,h}}{\tau_{e,h}}\right)\right)
\]

\[
Q_{\text{gen}} = \sim 36e^{-h} / \mu m \times d
\]

where \(t_{tr} = v_{dr} / d \) and \(d \)-sample thickness in \(\mu m \)
- thickness dependent
- bias dependent

CCD - charge collection distance
(averaged 'Schubweg' \(\rightarrow e + h \))

\[
\text{CCD} = \mu_{e,h} \times \tau_{e,h} \times E - \text{ohmic transport}
\]

better

\[
\text{CCD} = v_{dr-e,h}(E) \times \tau_{e,h}
\]

at high \(E \) \(v_{sat} \sim \text{constant} \)

\[
\frac{1}{\tau} = \frac{1}{\tau_{\text{intr}}} + \frac{1}{\tau_{\text{rad-ind}}} \quad \text{and} \quad \frac{1}{\tau_{\text{rad-ind}}} = \beta \phi
\]

Bad quality samples eg. pcCVD (or thin) appear more rad-hard when looking at CCE

4th NoRHDia Workshop at GSI, 08/06/2008
scCVD diamond

Samples:
- single crystal CVD diamond – producer e6
- free standing thin films 3-5 x 3-5 x 0.05 - 0.5 mm³
- <100> oriented

Atomic impurities:
- extremely low concentration of N (<5ppb) and B (<1ppb)

Macroscopic impurities:
- most of the samples contains threading dislocations

Detector fabrication:
- cleaning and wet oxidation
- electrodes sputtering using shadow masks
- pad motive of ‘sandwich’ geometry
- Cr(50nm)Au(100nm)+annealing or Al(100nm)

4th NoRHDia Workshop at GSI, 08/06/2008
scCVD diamond

Transport properties:

- can be operated at drift saturation velocity $\sim 10 \text{ V/}\mu\text{m}$
- velocities for e and h $\sim 140 \text{ µm/ns } @ \text{ 10 V/µm}$
- lifetime approaching 1µs \rightarrow CCD approaching several cm

![Graphs and diagrams related to transport properties and output signal vs. time.]

'Spectroscopic' grade

- Data on electronic and hole mobilities, drift velocities, and energy spectra with peaks at various energies (e.g., 5.443 MeV, 5.449 MeV).

4th NoRHDia Workshop at GSI, 08/06/2008
26 MeV protons irradiation

Proton beam in Karlsruhe:

- 26 MeV
- beam current 500nA - 40µA
- beam radius 1mm – 1cm
- temperature ~-10 °C (cold N2)
- time for 1e14p/cm² on 12x12cm²: ~2min

Dosimetry well established (RD50 Si irradiation):
- initially calibrated
- nickel foil activation (dose verification if needed)

<table>
<thead>
<tr>
<th>sample</th>
<th>beam current [µ A]</th>
<th>irradiation time [min]</th>
<th>integral fluence Φ [26 MeVp/cm²]</th>
<th>integral fluence Φ [26 MeV p/cm²]</th>
</tr>
</thead>
<tbody>
<tr>
<td>BDS14</td>
<td>0.6</td>
<td>2</td>
<td>5.35 × 10¹³</td>
<td>6.38 × 10¹³</td>
</tr>
<tr>
<td>EBS3</td>
<td>6</td>
<td>2</td>
<td>5.35 × 10¹⁴</td>
<td>6.11 × 10¹⁴</td>
</tr>
<tr>
<td>BDS13</td>
<td>12</td>
<td>22</td>
<td>1.07 × 10¹⁶</td>
<td>1.18 × 10¹⁶</td>
</tr>
<tr>
<td>s256-05-06</td>
<td>0.2</td>
<td>6 × 3</td>
<td>1.07 × 10¹⁴</td>
<td>-</td>
</tr>
</tbody>
</table>

annealed Cr(50nm)Au(100nm)

4th NoRHDia Workshop at GSI, 08/06/2008
SETUP AND EXAMPLES OF CURRENT SIGNALS

~20 MeV neutrons irradiation
(thanks to Otilia Militaru)

High flux fast neutron line in Louvain-la-Neuve:

- ~ 20 MeV
- max. flux 6.6×10^{12} n sr$^{-1}$ s$^{-1}$
- contamination gammas~2.4%, charged ~0.03%
- temperature ~-10C (cold N2)
- irradiation time about 6h

Dosimetry well established (RD50 Si irradiation):
- initially calibrated
- PAD (dose verification)

<table>
<thead>
<tr>
<th>sample</th>
<th>Integrated fluence</th>
<th>current int.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PAD dosimetry</td>
<td></td>
</tr>
<tr>
<td>BDS12</td>
<td>1.14×10^{14}</td>
<td>1.16×10^{14}</td>
</tr>
<tr>
<td>BDS12</td>
<td>1.97×10^{14}</td>
<td>-</td>
</tr>
<tr>
<td>s014-06</td>
<td>2.71×10^{14}</td>
<td>2.69×10^{14}</td>
</tr>
<tr>
<td>s014-06</td>
<td>5.92×10^{14}</td>
<td>-</td>
</tr>
<tr>
<td>s014-09</td>
<td>1.31×10^{15}</td>
<td>-</td>
</tr>
<tr>
<td>john100</td>
<td>2.05×10^{15}</td>
<td>2.63×10^{15}</td>
</tr>
</tbody>
</table>

Al 100nm

4th NoRHDia Workshop at GSI, 08/06/2008
~20 MeV n – on-line monitoring

- tunnel card developed for BML system of LHC (Steffen Mueller talk)
- biased detectors with DC current read-out
- Hamamatsu Si diode irradiated in parallel

- drop of the current and unexpected low CCD/CCE (bias induced polarization)
- however.... beam induced I ~ two orders of mag. over the dark current
- Si → self-heating leads to thermal runaway

4th NoRHDia Workshop at GSI, 08/06/2008
Optical Absorption – 26MeV p irradiation
(thanks to Prof. Schwartz)

- low sensitivity but absolute estimation of the concentration of the defects possible
- RT and cryo measurements

- only three ZPL; GR1-neutral mono-vacancy, R2, R11- split self-intersitial
- using ESR calibration constant of proportionality (Twitchen et al.) \(\rightarrow \sim 10^{17} \, V^0/cm^3 \)
- about 20x lower than expected from NIEL

4th NoRHDia Workshop at GSI, 08/06/2008
Photoluminescence - ~20MeV n irradiation

- high sensitivity but only relative comp.
- LNT measurements
- mainly GR1 (neutral mono-vacancy)
- residual defects (NV\(^0\), R2, some others)
- linear introduction rate

4th NoRHDia Workshop at GSI, 08/06/2008
Electronic Characterization

Transient Current Technique:
short range α-source (Am241-~5.5 MeV)
50Ω impedance DBA II, bandwidth 2.4 GHz, gain ~120
Digital Scope, bandwidth 3GHz, 20GS/s

Charge Collection Efficiency (primed state):
Sr-90 β-source - triggered $\varepsilon > 1.5$ MeV - ~MIP eq.
Low noise CSTA2 (Darmstadt) and A250CF (Amptek) preamplifier - shaping time 1μs
Classical electronics chain
Cross calibrated pulser + Si detector (known ε)

4th NoRHDia Workshop at GSI, 08/06/2008
Dark Current and TL

4th NoRHDia Workshop at GSI, 08/06/2008
Transient Current Signals

26 MeV p irradiation; Cr(50nm)Au(100nm) annealed electrodes

velocity didn’t change
no additional scattering
No space charge

\[\phi = 6.38 \times 10^{13} \text{ p/cm}^2 \]
\[\tau_e = 11 \text{ ns} \]

\[\phi = 1.07 \times 10^{14} \text{ p/cm}^2 \]
\[s256-05-06 \]
\[E = 1.32 \text{ V/\mu m} \]
\[\tau_e = 5.9 \text{ ns} \]
\[\tau_h = 6.3 \text{ ns} \]

\[\phi = 6.11 \times 10^{14} \text{ p/cm}^2 \]
\[E_{\text{ext}} = 1.6 \text{ V/\mu m} \]
\[\tau_e = 1.33 \text{ ns} \]
\[\tau_h = 1.7 \text{ ns} \]

4th NoRHDia Workshop at GSI, 08/06/2008
Bias-induced polarization

20 MeV n irradiation; Al(100nm)

Similar effect observed in CdTe and irradiated cryo Si (reverse biased)

4th NoRHDia Workshop at GSI, 08/06/2008
Transient Current Signals

~20 MeV n irradiation; remetallized Cr(50nm)Au(100nm) annealed contacts

4th NoRHDia Workshop at GSI, 08/06/2008
TCT \rightarrow trapping time (unprimed state)

$\beta_n = \beta_p$ - non-scalable with NIEL

β - about twice higher than in Si(!) - no re-trapping

V^0 cross-section for trapping

$$\tau_{e, n} = \left(\sigma v N \right)^{-1} \quad \sigma_{V^0} \approx 6 \times 10^{-15} \text{ cm}^{-2}$$

26MeV p

![Graph showing $\tau_{e, n}$ vs. E for 26MeV protons with different symbols for different datasets.](image1)

~20MeV n

![Graph showing $\tau_{e, n}$ vs. E for 20MeV neutrons with different symbols for different datasets.](image2)

4th NoRHDia Workshop at GSI, 08/06/2008
TCT \rightarrow trapping related effects

BDS14 $d=490$ μm after 6.39×10^{13} 26 MeV proton/cm2

Stopped \rightarrow polarization traversing \rightarrow priming

4th NoRHDia Workshop at GSI, 08/06/2008
Charge Collection for MIP

4th NoRHDia Workshop at GSI, 08/06/2008
Charge Collection

Are the detectors fully depleted?

4th NoRHDia Workshop at GSI, 08/06/2008
CCE \rightarrow CCD

Hecht

δ/d

$CCE - Q_{in}/Q_0$

$CCE = Q_{in}/Q_0$

CCD [μm]

RT

10^14 10^15 10^16

$\Phi_{26\text{MeV} p}; 20\text{MeV n}$ [cm$^{-2}$]

4th NoRHDia Workshop at GSI, 08/06/2008
Summary

We’ve damaged eight scCVD:

- no increase of the dark current after irradiation
- mainly neutral mono-vacancy (other complex defects(?))
- no space charge is observed after irradiation (CrAu electrodes)
- bias-induced polarization appears for samples metallized with Al
- no degradation of charge carriers velocity or mobility, only trapping
- effective trapping time proportional to the fluence
- equal β for 26MeV p and 20MeV n - NIEL violation

- after irradiation - priming and polarization phenomena are observed
- about \times 2.3 increase in CCD of primed detectors
- shape of the Landau distribution remains constant (up to 10^{15}) but MPV drops
- after 1.2×10^{16} 26MeV/p well separated signal above the noise

- scCVD (as a material) is not less radiation hard than pcCVD
Open questions

During irradiation:
- Self-annealing - is 43eV at RT valid?
- flux influence on self-annealing
- influence of biasing during irradiation

After irradiation:
- contacts influence - bias induced pol.
- polarization of primed detectors
- other defect - optically non-active
- light, temp sensitivity

How to compare with silicon? → S/N, no cooling etc.

4th NoRHDia Workshop at GSI, 08/06/2008
Outlook or How to Proceed

NIIEL verification:
- low fluence irradiation (<5x10^{14} part/cm^2) + TCT
- PL relative comparison of V^0 introduction rate (other defects)

Limits of diamond:
- more high fluence irradiations (>10^{15} part/cm^2)

Contact influence:
- try various metallization to explore bias-induced polarization

Defects spectroscopy:
- TL and TSC - too deep levels (?)
- PL extended range
- others ...DLTS(?)

Numerical simulations:
- priming, polarization etc.

How to improve:
- injecting contact for irradiated detectors? (cryo Si CID)
- light illumination, temperature
- go 3D
TRANSIENT CURRENT SIGNALS

\[i(t) = Q_{gen} \frac{V_{dr}(E_{in})}{d} \cdot e^{-t/\tau_{e,h}} \]

\[Q_{col-e,h}(E) = \int_{0}^{t} i_{e,h}(E,t)dt \]

CLOSE TO “IDEAL” TRANSIENT CURRENT SIGNALS

NEGATIVE SPACE CHARGE \((N_{eff} \approx 2.8 \times 10^{11} \text{ cm}^{-3})\)

CHARGE TRAPPING

APPROACHING SILICON DETECTORS

$^{241}\text{Am} \alpha$-particle spectrum measured using CS electronics

ORTEC Silicon detector

$d=100\mu m$

$\tau_c \sim 1\text{ms}$

$\tau_r = 4\text{ns}$

“OUR” SILICON DETECTOR

Silicon detector

$HV = -120\text{V}$

14keV

$\tau_c \sim 1\text{ms}$

$\tau_r = 10\text{ns}$

SC CVD DIAMOND DETECTOR

17keV

$d=480\mu m$

5.486MeV

$\tau_h \sim 968\text{ns}$

$\tau_r = 4.5\text{ns}$

$\Delta E (\text{FWHM}) < 25\text{ keV}$

How to improve: grow better quality crystals or use thin detectors

At RT resolution of Si detector is governed by electronic noise due to leakage current and capacitance

$\Delta E = 2.355 \sqrt{F E_0 \varepsilon_i + (\Delta e / 2.355) + a_1 E_0^{a_2}}$

PhD seminar at GSI, 07/02/2007
CHARGE COLLECTION - Q_{col}
LIFETIME, Q_{gen} and ϵ_{avg}

Hecht: \[
CCE = \frac{Q}{Q_0} = \left(\frac{\tau_{e,h}}{\tau} \right) \left(1 - \exp^{-\frac{\tau}{\tau_{e,h}}} \right)
\]

\[
\tau_{e, h} >\gg \text{transient time}
\]

$Q_{gen} = 68.6 \text{ fC} (\pm 0.2) \rightarrow \epsilon_{avg} = 12.8 (\pm 0.05) \text{ eV/e-h}$

PhD seminar at GSI, 07/02/2007
IRRADIATION 26MeV PROTONS

Irradiation in Karsruhe with 26 MeV protons

Homogeneous energy deposition, dose well known

Optical Absorption spectra at 7K

only GR1 and R11 → no other zero-phonon lines e.g related to N, or aggregates

Leakage current decreases

-Leakage current at the detection limit (I < 10^{-13} A/mm²) up to 2V/µm

PhD seminar at GSI, 07/02/2007
T_{eff} - effective trapping time

$$Q_{\text{coll}} = Q_{\text{gen}} \cdot \exp\left(-\frac{t}{\tau_{\text{eff}} - \epsilon, k}\right)$$

A good parameter τ_{eff}...... and even better one... $t_{\text{tr}}/\tau_{\text{eff}}$

PhD seminar at GSI, 07/02/2007
IRRADIATION 26MeV PROTONS

stopped particles \rightarrow polarization

- pulse high decreases with time for alpha particles

traversing particles \rightarrow priming

- stable operation
- $CCE(CCD)$ increases due to deep traps filling

defects can be annealed

- about 70% (holes) 50% (electrons) electrically active
defects annealed out after 3h at 1000°C (sample BDS14)

...obviously insufficient statistics
we need some more samples
to be destroyed!

PhD seminar at GSI, 07/02/2007
Radiation damage at **LOW energy** dominated by elastic cross section. C-nuclei have factor two smaller Z than Si and higher displacement energy (≈ 40 eV vs 20 eV)

Radiation damage at **HIGH energy** dominated by inelastic cross section. C-nuclei smaller and more stable than Si. Diamond order of magnitude better than Silicon.

PhD seminar at GSI, 07/02/2007
START DETECTOR FOR ToF SYSTEMS

New RH and fast start detector needed

PRINCIPLE OF TIMING MEASUREMENT

\[\sigma_{\text{intr}} < 50\text{ps} \]

REQUIREMENTS FOR START DETECTOR:

\[\sigma_{\text{ToF}} = \frac{\sigma_N}{\left| \frac{dV}{dt} \right| \text{thr}} \]

PhD seminar at GSI, 07/02/2007
RESULTS FOR 27Al 2AGeV - FoPi

TIME DIFFERENCE D1 vs D2

INTRINSIC RESOLUTION: $\frac{\Delta t_{D1} - \Delta t_{D2}}{\sqrt{2}}$

$\sigma_{\text{intr}} = 28\text{ps}$

limited only by electronics (TDC 50ps/bin)

FOR MIP p SC DIAMOND ONLY HOPE

PhD seminar at GSI, 07/02/2007
FRAGMENTATION AT FRS OF GSI

PhD seminar at GSI, 07/02/2007
FRS - PRELIMINARY RESULTS

132-Xe 740 AMeV fragmentation spectrum

SC-CVD-DD
E=2V/micron

Z=47

Z=48

Z=49

Z=50

ADC channel [a.u.]

measured signal SCL

calculated total current non-SLC (τ=210ps)

Traversing particle --> Q₀=20.05 pC

Sample thickness d=400µm

HV = 500V

measured

EVEREST simulated

simulated after APLAC (see diagram)

500V

PhD seminar at GSI, 07/02/2007
MORE DATA

Relativistic protons (1-2 GeV) (timing)
- stable operation over a week (rates up to 1MHz)
- 100% separation from electronic noise (d=400µm)
- unsatisfactory timing → electronics development needed

Low energy (6 MeV/u) ions (p, He, Li) (timing, ΔE)
- good energy resolution ~1% (limited by experimental set-up)
- very good timing properties σ_{intr} ~ 30ps

Heavy ion beams Ta, Al, C, Ca (timing, ΔE) (FoPi)
- good energy resolution ~1%
- very good timing properties σ_{intr}~30 ps
SUMMARY and CONCLUSIONS

SC CVD Diamond as \(\Delta E \) detector:
- lifetime of charge carriers >> transient time \(\rightarrow \) CCE \(\sim 100\% \) at low E
- stable detection
- max. energy resolution (17keV/5.5MeV)
- \(\epsilon_{\text{avg}} = 12.8 \text{ eV/e-h} \)

homogeneous material suitable for energy loss spectroscopy

SC CVD Diamond as Timing detector:
- high mobility (\(e^- 1300-3100; h^-2400 \) [\(\text{cm}^2/\text{Vs} \)])
- transient signals 1 \(\text{ns}/100\mu\text{m} \), uniform \(t_{rs} < 150\text{ps} \)
- very good intrinsic time resolution (\(\sigma_{\text{int}} \sim 28 \) ps) (heavy ions)

fast device perfect for start detectors

Heavy irradiations with 26 MeV protons
- leakage current drops (no electronics noise), CCE drops, polarization and priming phenomena
- diamond is expected to be at least 10x more radiation hard than Si at higher energies

PhD seminar at GSI, 07/02/2007
OUTLOOK

X-ray microbeam mapping at ESRF - to find possible correlation with macroscopic defects (May'07)

MIP timing measurements with "stacked" diamonds using BB and fast CS electronics (May'07)

Detailed radiation hardeness tests --> irradiation with protons (26MeV) in Karlsruhe

 fast neutrons in (~1MeV) Ljubljana (~10MeV) Leuven

PhD seminar at GSI, 07/02/2007
PARTICIPANTS

DETECTOR LABORATORY (GSI):
E. Berdermann, A. Martemiyanov, M. Rebisz, M. Traeger, B. Voss, A. Caragheorgheopol

FoPi COLLABORATION (GSI):
M. Ciobanu, M. Kis, K. Hildenbrand, A. Zhilin

TARGET LABORATORY (GSI):
B. Lommel, W. Hartmann, A. Huebner, B. Kindler

MATERIALFORSCHUNG (GSI)
D. Dobrev, K. Psonka (biophysics), K. Voss, K. Schwartz, B. Fisher

FRS (GSI)
H. Weick, D. Boutin, H. Geissel, Y. Litvinov, C. Nociforo, K. Suemmerer, M. Winkler

RISING COLLABORATION (GSI)
P. Bednarczyk, M. Gorska, I. Kojouharov

Univ. Karlsruhe
Wim de Boer, A. Furgeri, J. Bol, S. Mueller

ESRF, Grenoble, France
J. Morse, M. Salome, E. Mathieu, J. Haertwig

AIST Tsukuba, Japan
Ch. Nebel

Univ. Milano
A. Pullia, S. Riboldi

PhD seminar at GSI, 07/02/2007
ENERGY NEEDED TO CREATE e-h PAIR

Rule \sim 3\times E_g \text{ is not valid for diamond}

Various values reported up to now for diamond:

- From 19 eV/e-h \rightarrow 13.1 eV/e-h
- From calculation 11.8 eV/e-h diamond

Charge creation is not a random process

$\sigma = \sqrt{N}$

$\sigma = \sqrt{F \times N}$ - intrinsic resolution
where $F < 1$ is the fano factor

general trend measured ϵ decreases when charge carriers lifetime increases
CCE mapping – ion microbeam at GSI