

Diamond Detectors Ltd

Fabrication and Packaging Capabilities

Kevin Oliver

Presentation Contents

- ➤ Brief Background.
- > DDL road map to expand our capabilities further
- ➤ Diamond detector application examples.
- > Closing comments

June 20, 2008 2

Brief History

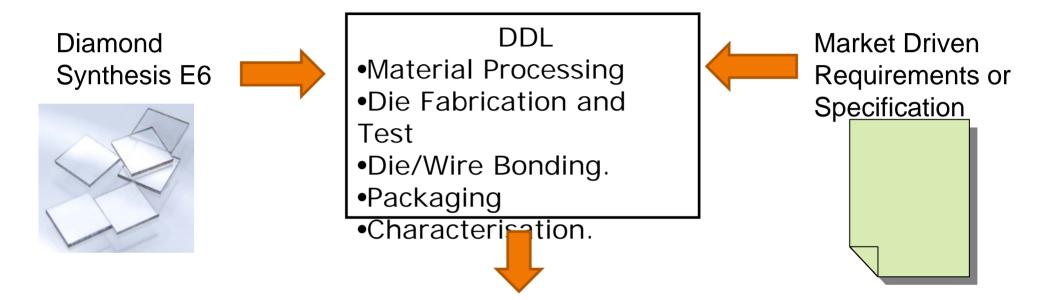
 Diamond Detectors Ltd is currently 100% owned by Element Six Technologies and was spun out in 2007.

Why DDL was created?

- The focus of Element Six Ltd is on material development and bulk material synthesis.
- The detector/sensor market requires a diverse range of engineered products and skills. Including development, manufacture and sales.
- DDL has been formed to provide market focus and develop a range of packaged devices. To provide research and industry with a partner capable of providing the added processes needed to take diamond from material to characterised device.

Brief History Diamond Detectors Ltd

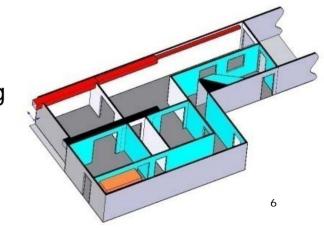
 Certificate of Incorporation February 2007 (6097934, VAT 904 1112 82)


Press release Thursday 3rd May 2007
 "Element Six Spins Out New Company to Develop Diamond Detectors......

 Moved into our own premises June 2007.
 Location Poole, Dorset.

Reason for Spinning Out To Provide Detectors

Packaged Solutions to


Customers in R&D and Industry

DDL - Roadmap

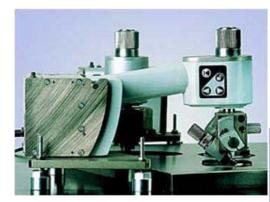
DIAMOND DETECTORS LIMITED

- Phase-I (2007 Q3)
 Technology Transfer from E6 to DDL.

 Build Start (access to premises from 2nd June 2007)
- Lapping & Polishing Processes
- Chemistry Lab.
- Laser Lab.
- Lithography and Assembly Clean rooms. (class 1000 & 10000)
- Phase-II (2007 Q4)
 - -Fabrication and packaging of simple devices
 - Build Completion.
- Phase-III (2008/09) Purchase of additional manufacturing tools including:-
- Metallization (Delivery July 2008)
- Laser Dicing (Delivery July 2008)
- Lithography (Direct write tools)
- Development of more complex detectors/sensors including electronics.

DDL-Build-2007

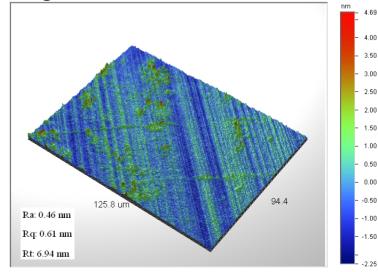
• 2 Newly built clean rooms class 1000 and 10000 (~100m²)



DDL-Equipment & Capabilities

Lapping, Polishing and Semi-automatic scaife

Optical Profiler NT9100



Diamond Thinning and Polishing Processes including

- Lapping
- Resin wheel polishing
- Scaife polishing

Typical process specifications:-

Polycrystalline standard polish Ra < 30nm. Polycrystalline detector polish Ra < 12nm. Polycrystalline Super polish Ra < 5nm. Single crystal detector polish Ra < 5nm.

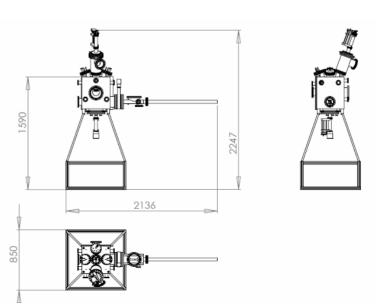
DDL-Equipment

• Die bonding including universal wedge bonder (K&S 4523) and ball bonding

(K&S 4124)

- Wire bond pull strength is monitored using Dage 4000 system.
- Encapsulation (UV EFOS Novacure)
- Asymtek Century Fluid/Adhesive Dispense

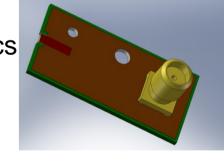
High Voltage Electrical Isolation Test (Keithley 6517A, 487 and 236).



DDL-Equipment

- Laser Dicing System
- Shaping Software
- > Dicing up to 5mm thickness

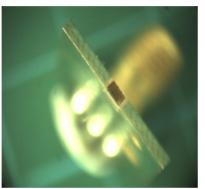
- Sputtering System
- > 3 Targets (1 nano-cluster)
- > 4" Substrate Holder
- > Ion-Beam-Polishing
- > 850C Substrate temperature.
- > 25kev Substrate bias.
- > RF plasma clean/etch

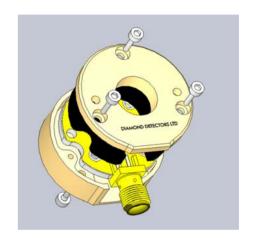


Diamond Detector Applications

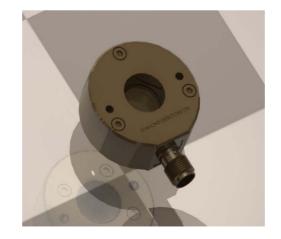
A wide range of detector applications and detector types make diverse demands on the material

- Particle physics: beam condition monitors, trackers, beam abort systems
- Dosimetry: radiation therapy, equipment calibration, active exposure monitoring
- Nuclear applications: homeland security, nuclear reactors and fusion experiments
- Synchrotrons: white beam monitoring
- UV detectors: photolithography ,flame detection and solar physics
- Alpha/Beta: air-Flow and survey meters, waste incineration





Diamond Detectors Applications



X-ray Sensitivity Comparison for Different Dosimeter Types

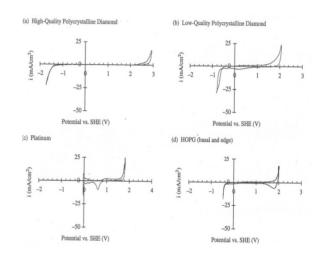
Higher sensitivity of High Purity SC CVDD

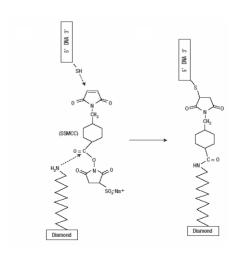
Smaller devices

Improved spatial resolution

	E6 HP SC CVD diamond	Commercial Silicon dosimeter	Air-filled Ionisation chamber
Sensitivity (nC/Gy)	240	74	7.5
Active Detector Volume (mm³)	0.3	0.2	120

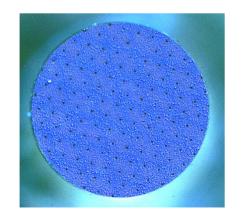
Data for samples irradiated in a 6MV photon beam with a 10cm x 10cm field at a source-to-detector distance of 100cm, courtesy of Scanditronix

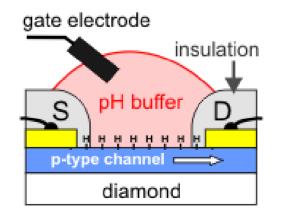



Diamond Sensor Applications

Why Diamond

- Wide electrochemical window
- Extremely low background current.
- Bio-Compatible (non-fouling)
- Very stable surface (Chemically inert)
- Varied surface terminations possible
- •Mechanically robust

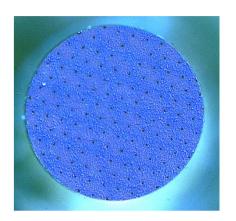

Applications



• Electro-chemical sensors (RDE, MEA, trace element analysis)

(Oil, Mining, Automotive, Medical, Food, Water, Environmental, Emissions, etc)

- PH-Sensors
- Temperature-Sensors
- Conductivity



20 06 2008 16

Diamond Sensor Devices

DIAMOND DETECTORS
LIMITED

- Microelectrode Array (MEA)
 - Structured array of many small (2 25µm) BDD electrodes surrounded by non-conducting intrinsic diamond
 - Housed inside sensor with membrane to select analyte
 - Requires analyte-specific solutions in contact with surface

- Applications
 - Petroleum industry (well logging)
 - Academic research (biology, electrochemistry)
 - Environmental (trace element analysis)
 - Process monitoring (food / beverage, chemical, pharmaceutical)
 - Medical.
- Development status
 - Prototypes available (2nd generation in design)

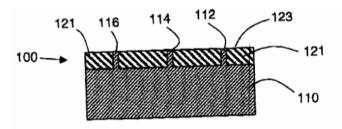



Figure 1a

20 06 2008

Diamond Sensor Devices

Rotating Disc Electrode

- Small BDD disc (3 10 mm) attached to a shaft and protected by a PEEK coating
- Used in conjunction with a potentiostat

Applications

- Trace metal analysis (stripping voltammetry)
- Pharmaceuticals (new drug analysis)
- Electrochemical investigations in aqueous electrolyte and organic solvents

Development status

Small volume production

Closing Comments

June 20, 2008 19

Closing comments

- From early experiments using naturals, diamond detector applications have grown into diverse applications with a growing interest from commercial and research markets where high performance detectors/sensors are required.
- Outstanding technical challenges remain including surface quality, metallization and material size for high purity single crystal.
- DDL continue to support single crystal development with E6 R&D
 The goal of this development is predominantly to improve yield and size.
- CVD diamond high purity single crystal and polycrystalline materials are now readily available. DDL stock material to avoid long lead time on standard product.

 DDL have a number of parties interested in thin materials in both single crystal and poly. This work has been more difficult than expected but process is being made.

Closing comments

- New markets are being opened up by improved material quality, larger available sizes, and an increased understanding of diamond performance
- New diamond detector applications are being driven by technological advances in other fields e.g. radiation therapy

 A new detector company, Diamond Devices Ltd, has been set up to service these markets.

The End Thank you

June 20, 2008 22