Synchrotron X-ray Beam Tests
of Poly- and Single-Crystal Diamond at ESRF

J Morse
European Synchrotron Radiation Facility, Grenoble
Talk Outline

1. X-ray Synchrotron beam monitoring requirement and diamond device approach

1. why diamond?

2. ESRF test results on SC (and PC)

Development Issues

-- surfaces, contacts
-- threading dislocations
-- RF electronic readout
X-ray Synchrotrons, beam monitoring goals

Need for \textit{continuous measurement} \((\rightarrow \text{permanent in-beam element})\)

Position / Vector

- Required beam stability \(\sim 10\%\) of beam size typically \(1 \sim 200\mu m\), \textit{nanofocusing goals} (already \(\sim 100\)nm routine at ID22-ESRF)
- \textit{Measurement bandwidth} \(\geq 1kHz\) (e.g. acoustic vibrations)

Intensity:

- (relative) accuracy & linearity requirement \(\leq 0.1\%\)

Timing:

- e.g. synchronization of laser with X-rays in pump-probe experiments
- electron-photon bunches \(50 \sim 100\)psec (MHz to 352MHz rates)

\textit{device}...

- minimal beam interference (absorption, scattering, coherence loss)
- reliability with zero / low maintenance
- compatibility with beamline design (size, vacuum...)
- cost??

\(\rightarrow\) max. \textit{absorbed} power: \(\leq mW\) \textit{monochromatic beam}

\(\rightarrow\) \(>10W\) \textit{in ‘white’ beam applications}!!
Diamond X-Ray BPMs: Principle

- thin plate diamond sample with ‘X-ray transparent’ metal electrode contacts e.g. <100nm Cr, Ti, … Ni, Al
- diamond bulk acts as solid state ‘ionization chamber’ in X-ray microbeam
 electron thermalization range ~ microns
- current signal readout ‘DC’ or RF (synchrotron clock frequency / n bunches)

Beam Monitoring: position and intensity

multiple electrode designs, e.g. simple quadrant motif, diffusion splitting of charge

→ weighting of electrode currents A, B, C, D gives beam ‘centre of gravity’
→ sum of currents gives beam intensity

Packaged device tests ID09B
why single crystal diamond?

Z = 6 → low specific X-ray absorption / beam scattering
short ‘hot electron’ range at high energies

high electron AND hole saturation velocities (150µm/ns), low dielectric constant (5.5)
fast pulse response (<1nsec in 50µm thick device)
→ synchrotron beam ‘pulse by pulse’ analysis possible

wide bandgap (5.5eV), stable and insulating O-terminated surface,
excellent thermal/mechanical properties
→ ‘low’ leakage currents at temperatures up to ~400°C
high heat load ‘white’ beam monitoring possibility (??)…

Polycrystalline material
grain-boundary artifacts
→ bulk scattering, ‘powder’ X-ray diffraction
→ limited charge transport (incomplete charge collection)

Single Crystal gives:
X-optics surface quality (<1nm) possible
beam coherence preservation
Uniform electrical response:
charge-carrier lifetime (E6 ELSC material) ~0.1 - 1µs
→ 100% charge signal collection over ~mm distances

~1mm
Polycrystal sample, image from XBIC mapping in X-ray beam

~0.5mm
Tromson et al, CEA-LIST
S-C E6 material I-V curves *under steady-state X-ray beam illumination (6 ~7keV)*

Lift-off litho’ evaporated contacts
Glasgow University

Shadow mask, sputtered contacts
GSI Darmstadt

\[\begin{array}{c}
\text{bias} \\
333\mu m C^*
\end{array} \]

\[\begin{array}{c}
130nm \text{ Au} \\
30nm \text{ Pd} \\
10nm \text{ Ni} \\
10nm \text{ Ti (annealed)} \\
30nm \text{ Pd} \\
130nm \text{ Au}
\end{array} \]

\[\begin{array}{c}
\text{current (nA)} \\
0.5V/\mu m
\end{array} \]

\[\begin{array}{c}
\text{bias (V)} \\
-150, -100, -50, 50, 100
\end{array} \]

\[\begin{array}{c}
\text{current (nA)} \\
0.5V/\mu m
\end{array} \]

\[\begin{array}{c}
\text{bias (V)} \\
-300, -200, -100, 100, 200, 300
\end{array} \]

Si beam flux calibration (vacuum)

\[\varepsilon_{\text{Diamond}} = 13.05 \pm 0.2 \text{ eV/e-h pair} \]

(ESRF, MI-885)
Resin wheel polish ‘tadpoles’

- 10μm SEM

- XBIC map, 6 keV X-rays
- Ni-TiC contacts

- hot spot around Al wedge bond

- Guard ring
electrode

- 75μm
- 50x reflect microscope

left
right
Area response uniformity ‘good’ contact

50μm thick sample, bias 50V, 50nm sputtered Al-Al contacts (GSI Target Lab.).
1μm-step raster scan with beam probe 0.3 x 1.1μm² at 6keV (ID21 beamline)

Row 40 signal variation **0.103%** (1σ)

Signal variation during mesh scan
- linescan at column 50, rows 0-100

~ 20 minutes
Ni/Pt/Au and Ti(annealed)/Pt/Au contacts, fabricated at Stanford NanoFab’ Facility (Chris’ Kenney)

50, 20, 10 and 5μm quadrant isolation gaps

E6 MDS2 & MDS3 samples, Achard-CNRS ATJ30 sample
Failed processing of Ni-TiC contacts

E6 Sample MDS-2, I-V under steady state X-ray beam

bad Ni-TiC contacts
Sample thickness ~350µm

electrometer saturated

Sample thickness ~350µm

A lot of hysteresis

-26nA
SEM-EBIC measurements:

E6 SC material, Stanford processed Ni-TiC electrodes

Secondary electron emission contrast

!! Surface probe 1 ~ 2 µm
Signal ‘linearity’ with beam intensity

E6-70310 thickness 100μm single crystal
20nm+20nm Cr, Au contacts - GSI
‘dc’ quadrant currents measured with electrometers
bias 50V

Incident beam flux (X-ray/sec in 0.4 x 1.2μm² fwhm spot)
20% diamond absorption, 4 bunch synchrotron fill pattern with 2.8μs orbit
→ <<1 … ~15 X-ray photons / bunch
Position Response and beam size

For large beam (> 50µm), quadrant ‘crossover response’ is \(\sim \) line integral over the beam intensity profile.

For small beam (~µm), crossover response is convolution of photoelectron thermalization range (~1µm) and lateral charge diffusion (5~50µm) which occurs during drift of \(e^- \), \(h^+ \) charge carriers.
Position sensitivity and useful range

For small beam, response slope / sensitive range may be modulated over range 10~100µm by
- applied electric field (bias)
- inter-electrode gap / sample thickness

limit for weak fields is charge recombination or drift trapping signal loss…

100µm thick sample, 140µm quadrant spacing exaggerates weak field effect

nb. low frequency Electrometer current measurements
ID21 Vertical / horizontal position timescan

Al-Al contacted quadrant device, ESRF ID21 beamline (MI-885)

timescan V->F data, 1sec integrations

σ <15nm

σ <20nm
ESRF synchrotron in 4 bunch mode (ID21)

ID21: focused X-ray beam ~0.5 x 0.1 µm² and ~10² ph/pulse at 6keV

ID09B: ~50 x 100µm² chopped white beam, ~10⁵-⁹ ph/pulse at ~18keV

5% beam absorbed in diamond → ~1pC ... 10nC /pulse (1GeV ... 10TeV)
DSO signal after ~30db preamp gain

device layout not optimized for RF!

+150V/118µm Al-Al sputtered electrodes, *single crystal*
Timing of ESRF Synchrotron Pulses

E6 Sample MDS-2, ‘bad’ Stanford Ni-TiC contacts, DBAIII 2.3GHz preamp

single crystal

![Graph showing pulse separation](image)

ESRF RF group data:
- rev. freq. 355044Hz / 16 bunches
- \(\rightarrow \) interbunch period = 176.035ns

measured:
- mean = 176.036ns
- \(\sigma = 16 \text{ps} \)

Lecroy DSO data post-analyzed with leading edge ‘discrimination’ normalized Individual to signal pulse integrals
- \(\sigma \rightarrow 20 \text{ps for simple leading edge discrimination} \).
Charge drift and signal development
XBIC map, 5µm steps, 50ps time bins
+150V/118um Al-Al sputtered contacts, *single crystal*

0.5ns wide ‘gated integrations’,
time-slew of signal as function of beam position
(response of bottom right quadrant only is shown here !)
position response at ID09B (chopped beam)

\[\sim 5 \times 10^7 \text{ ph/pulse (1kHz) at } \sim 18\text{keV, 5\% absorption in } \sim 350\mu\text{m thick diamond} \]

Single crystal sample, TiW contacts

Ad hoc test of single crystal OSU quadrant device

Very poor circuit layout & cabling of diamond support \(\rightarrow \) signal ‘bounce’
Position response
(motor scan of diamond)

timescan with beam initially centered on diamond

Beam found at: $(y,z) = (0.002, -0.004)$, size: 0.188×0.069 mm
Polychromatic beam, choppers in, ≈18keV X-ray beam U17-13, phg 7 pvg 0.7, pd2f counting: 1.24×10^{11}/sec
In beam spot ≈100 x 200µm2 FWHM.

rise time: 235ps, area 5.4nVs,
fall time 3.2 ns determined by circuit response(?) Bias 500V / ≈300µm,

Linearity check to ≈6 x106 photons absorbed/pulse)

No reduction in signal response with overnight beam on sample
Measurements with GSI stripline mounted *polycrystalline* sample

- **2mV/2ns division**: monochromatic ~ 5×10^6 ph/pulse at 18keV, ~2% absorption (350µm thick diamond)

- **2mV/1µs division**: 24*8+1bunch hybrid mode

- **2mV/1µs division**: Signal constant over duration of heatload chopper pulse.

Scattered beam ‘powder diffraction’ rings arising from the ~10µm random orientation grains of the polycrystalline diamond plate.
conclusions – future plans

‘good’, flawless device fabricated on single crystal sample using ‘simple’ metal contacts…
but avoiding ‘significant’ local defects is not trivial

demonstrated (ID21 + ID09B tests):

- flux intensity: linearity - stability – area uniformity \(\sim 0.1\%\)\(^1\)
- position response: sensitivity \(\sim 10\text{nm}\)\(^*\)
- timing resolution / leading edge risetime \(\sim 20 / 250\text{ps}\)\(^**\)

rms figures
- \(^1\) single crystal samples only!
- \(^*\) for a 1\(\mu\text{m}\) beamsize. \textit{Accuracy is limited by lithography}
- \(^**\) circuit layout limited

present objectives:

- validate ‘industrial’ source(s) of reliable contact processing with precision lithography
 …on thinned (to <50\(\mu\text{m}\)) CVD plates
- implement electronic readout: multichannel electrometers or RF signal techniques

\textit{long-term radiation stability remains unproven, but X-ray induced damage can only occur at surfaces with low energy X-rays in a ‘perfect’ diamond crystal…}

\(\sim 5\text{ GigaGray, 16hour stability test made at ID21}\)
<table>
<thead>
<tr>
<th>Acknowledgements</th>
</tr>
</thead>
<tbody>
<tr>
<td>E Berdermann, M Pomorski</td>
</tr>
<tr>
<td>J Grant, V. O’Shea</td>
</tr>
<tr>
<td>P Sellin, A Lohstroh</td>
</tr>
<tr>
<td>H. Kagan</td>
</tr>
<tr>
<td>Ph. Bergonzo</td>
</tr>
<tr>
<td>M Nesladek</td>
</tr>
<tr>
<td>P. Muret</td>
</tr>
<tr>
<td>M. Mermoux</td>
</tr>
<tr>
<td>J Butler</td>
</tr>
<tr>
<td>(Ch. Kenney)</td>
</tr>
<tr>
<td>M Salomé, J. Härtwig, L Descamps, I. Snigireva, A Rommevaux (E Mathieu, H. Gonzalez, G. Naylor…))</td>
</tr>
</tbody>
</table>

Element Six (Ascot & Cuijk), Diamond Detectors Ltd., LIMHP: material samples, surface polishing