Materials research with ion beams

beam-induced material modifications

- track formation
- damage analysis
- threshold
- sputtering

single ion track

surface tracks

irradiated epoxy foils

I nanotechnology

nanopores

biosensors

nanowires

Christina Trautmann, Materialforschung, GSI

ion beams kinetic energy: MeV- GeV 10% of velocity of light

Single ion tracks produced in amorphisable insulators @ ~ 10 MeV/u heavy ions

Au-ion trajectory in high T_c superconductor

cross section of Pb-ion track in mica

linear energy loss of different ions

linear energy loss of different ions

Track formation models

<u>macroscopic</u>

Coulomb explosion: screening time by electrons few quantitative calculations

thermal spike: local melting and quenching transient thermodynamics?

[Desauer, Z. Physik 38 (1923) 12] [Seitz and Köhler Sol. St. Phys. 2 (1956) 305] [Lifshitz et al. J. Nucl. Ener. A12 (1960) 69]

[Fleischer et al., J. Appl. Phys. 36 (1965) 3645] [Lesueur et al., Rad. Eff. Def. Sol. 126 (1993) 135]

<u>microscopic</u>

molecular dynamic calculations: ab initio lattice calculations

- electron subsystem not included
- interatomic potential?
- large computing times!

[Beuve et al.PRB 68 (2003) 125423] [Bringa NIMB 203 (2003) 1]

Scheme of two-step process for track formation

energy deposition

electronic excitation & ionization 'hot' electrons

electron cascade

0000000000000000

0000

0000

0000

0000

0000

0000

0000000

10⁻¹⁵ - 10⁻¹⁴ s

energy diffusion in electronic subsystem cooling of hot electrons 'cold' lattice

electron-phonon interaction

0000

0000

0000

0000

0000

0000

0000

Coulomb explosion

10⁻¹³ - 10⁻¹² s

energy diffusion to atoms lattice heating melting

quenching of atomic disorder

thermal spike

metals ~ 10^{-12} s insulators ~ 10^{-10} s

fast cooling of atoms defect formation

Scheme of two-step process for track formation

energy deposition

Inelastic Thermal Spike Model

two-temperature model

~ ion energy loss

Electrons
$$C_e(T_e)\frac{\partial T_e}{\partial t} = \frac{1}{r}\frac{\partial}{\partial r}\left[rK_e(T_e)\frac{\partial T_e}{\partial r}\right] - \underline{g}(T_e - T_a) + A(r,t)$$

Atoms $C_a(T_a)\frac{\partial T_a}{\partial t} = \frac{1}{r}\frac{\partial}{\partial r}\left[rK_a(T_a)\frac{\partial T_a}{\partial r}\right] + \underline{g}(T_e - T_a)$

electron-phonon coupling

- C = specific heat capacity K = thermal conductivity
- <u>metals</u>: Wang et al., J. Phys. : Condens. Matter 6 (1994) 6733 Dufour et al. Bull. Mater. Sci. 22 (1999) 671

insulators: Toulemonde et al., Nucl. Instr. Meth. B166-167 (2000) 903

Thermal Spike Code available: Toulemonde (CIMAP, Caen) or Stoquert (PHASE, Strasbourg)

Diffusion & Transfer of Energy - Thermal Spike

Electron-phonon coupling: λ

Toulemonde, Dufour, Paumier, Meftah, NIM B166-167 (2000) 903

Track formation and defects in different materials

- metals
- semiconductors
- insulators

Material sensitivity (phenomenological)

high sensitivity

low sensitivity

dE/dx threshold ~1 keV/nm	~20 keV/nm	~50 keV/nm
<u>insulators</u>	<u>semi-conductors</u>	<u>metals</u>
🙂 polymers	🙂 amorphous Si	🕲 amorphous alloys
Oxides , spinels	O GeS, InP, Si _{1-x} Ge _x	😐 Fe, Bi, Ti, Co, Zr
ionic crystals	😕 Si, Ge	🙁 Au, Cu, Ag
🙁 diamond		

track size and energy loss threshold

Gaiduk PRB (2003)

structural changes in intermetallic compound NiTi

Tracks in metals

100nm 850 MeV Pb → Ti

discontinuous tracks in Ti

Dunlop et al. NIM B 112 (1996) 23

30 MeV C₆₀ → Ni₃B amorphous tracks

Dunlop et al. NIM B 146 (1998) 222

Barbu et al., NIMB 145 (1998) 354

sensitive metals pure metals: Fe, Ti, Co, Zr, Bi metallic compounds: NiB, FeCrNi, TiNi, etc metallic glasses: PdSi, FeB, etc

insensitive metals Nb, Cu, Ni, Pt, W, Ag, Pd, Au

Tracks in semiconductors

no tracks in Si by monoatomic ions (up to U ions) but amorphous tracks by C₆₀ clusters

30 MeV C_{60} clusters \Rightarrow (111) Si

Fig. 3. Bright field electron micrograph of a monocrystalline silicon target irradiated at grazing incidence ($\approx 80^{\circ}$ of normal incidence) with 30 MeV C₆₀ cluster ions. The micrograph is taken without any reflection strongly excited.

Dunlop et al., NIMB 146 (1998) 302 Canut et al., NIMB 146 (1998) 296

discontinuous tracks in semiconducting compounds

Gaiduk et al, PRB 66 (2002) 045316 Physica B 340 (2003) 80

. Chadderton

amorphous tracks in narrow bandgap GeS

10

layered structure, $E_g = 1.65 \text{ eV}$

lattice constants: a = 0.429 nm c = 0.365 nm

2.7 GeV U \rightarrow GeS

Vetter et al., NIMB 91(1994) 129

Tracks in carbon-based materials

Graphite (highly oriented pyrolytic, HOPG)

30 nm x 30 nm

15 nm x 15 nm

50 nm x 50 nm

Liu et al, PRB 64 (2001) 184115 NIMB 212 (2003) 303

track diameter in HOPG

extremely small track diameters
100% track efficiency only above ~18 keV/nm

Ion tracks diameter in DLC

1 GeV U-ions ($5x10^9$ cm⁻²) \rightarrow DLC

AFM measurements

topography

current mapping

ions

DLC 100 nm

n⁺⁺-Si

sp³-bonds: 70 - 80 %

U = 150 mV

I-V diagram of single track and off-track regions

possible field emitting device

Polymers

- chain scission
- cross linking
- formation of radicals
- amorphisation etc

outgassing of small molecules (CO_n, C_nH_m,...)

creation of unsaturated bonds (e.g. -C = C, C=C)

graphitization

graphitization of Kapton increasing as a function of ion fluence

Infrared spectroscopy: unsaturated bonds

Steckenreiter et al. J. Polym. Sci. A37 (1999) 4318

Defect creation in ionic crystals

LiF, NaCl, KCl, MgF₂, CaF₂, BaF₂

Spectroscopy of color centers

Schwartz et al. Phys. Rev. B 58 (1998) 11232

Aggregation of single defects

Scheme of track damage in LiF

Ion-induced surface processes

 $\rho_{matrix} > \rho_{track}$

Swelling and stress due to phase change and/or defects

Xe (450 MeV) \rightarrow **quartz** (range = 30 μ m)

ion-induced swelling

scales with range of ions
 saturates at high fluences
 increases with electronic energy loss
 occurs above a dE/dx threshold

threshold effect

40

Trautmann et al., PRB 62 (2000)13

Beam-induced grain breaking

4 MeV/u Pb → CaF₂ powder

in-situ X-ray diffraction

40 nm \rightarrow 20 nm grains

before irradiation

10¹² cm⁻¹

Boccanfuso, thesis CIRIL

Use of diamonds in irradiation experiments

Solids under extreme conditions

simultaneous or sequential exposure

Motivation: Materials Science & Geosciences

Geo- and thermochronology

Minerals exposed to high pressure and temperature

Earth's interior:

25 °C/km and 50 MPa/km

influence of pressure on fission \mathbf{X} track formation? (e.g. track length \rightarrow dating)

 \star can fission fragments induce specific phase transitions?

diamond anvil cell (DAC)

Irradiation experiments with pressurized samples

Irradiation experiments with samples pressurized in diamond anvil cells (DAC)

