

Surface and bulk defects of diamond and correlated electronic variations

Christoph E. Nebel

Fraunhofer Institute of Applied Solid State Physics (IAF)

Freiburg, Germany

Outline:

I. Surface Properties Morphology Termination Surface Band Bending Schottky Contact Properties

II. Bulk properties

Mobilities P1 and H1 Centers μτ-Products Deep Defects

Acknowledgement

- WSI, Germany AIST, Japan AIST, Japan AIST, Japan AIST, Japan AIST, Japan AIST, Japan Univ. Tsukuba, Japan
- Uni. Sao Paulo, Brasil

- Dr. Zeisel (ODLTS)
- Dr. Rezek (AFM)
- Dr. Yang (electrochemistry)
- Dr. Takeuchi (TPYS)
- Dr. Ri (wet chemical etching)
- Dr. Tokuda (homo-epi growth)
- Dr. Watanabe (homo-epi. growth)
- Dr. Misouchi (EPR)
- Dr. Gräff (EPR)

Fraunhofer Institut Angewandte Festkörperphysik

I.a) Surface Morphologies

Fraunhofer Institut Angewandte Festkörperphysik

Fig. 3. AFM top view images of (a) surface of as-received Ib (001) substrate, (b) surface treated by the H-plasma (i.e. 0% CH₄ concentration) for 6 h, and (c) growth surface at 0.025% CH₄ concentration for 42 h.

2. Typical surface morphologies of the homoepitaxial diamond film in region III in Fig. 1. (a) a top-view AFM image (200 nm \times 200 nm \times 0.5 the surface morphology for the misorientation angle of 0.4° at 0.025% CH₄/H₂ ratio for 42 h deposition, and (b) a top-view AFM image (1 < 1 μ m \times 0.5 nm) for the misorientation angle of 0.2° at 0.025% CH₄/H₂ ratio for 6 h deposition.

Atomically flat surface with step-etch growth. Terraces run parallel to the (110) direction

H.Okushi, Diam. Rel. Mat. 10, 281 (2001)

Homo-Epitaxial Growth of CVD Diamond (AIST)

Fig. 1. Map of the surface morphology as a function of both the misorientation angle and the CH_4/H_2 ratio.⁽¹⁾ The dotted lines in the figure serve as a guide to the eye and are used to divide the area into four regions I–IV. A detailed explanation is given in the text.

H. Watanabe et al., New Diamond and Frontier Carbon Technology, 12, 369 (2002)

but: extremly low growth rate (10 nm/h)

Institut Angewandte Festkörperphysik

Surface Properties of Homo-Epi. Diamond

Fraunhofer Institut Angewandte Festkörperphysik

"Atomically" Smooth Surface RMS = 0.8 Å

Polycrystalline CVD Diamond:

Institut Angewandte Festkörperphysik

fast growth, large area

M. Nesladek

Polished Diamond

Polishing Roughness: 2 - 15 nm Fine structure roughness: 5 A

Fraunhofer

I.b) Diamond Surface Terminations C(100)(2x1)

Institut Angewandte Festkörperphysik

H-Termination

Institut

Angewandte

Fraunhofer

Defect Free: C(100)-(2x1):H

Fraunhofer Institut Angewandte Festkörperphysik

H-termination: ex-situ at 800 °C, for 1h

- •Microwave Plasma CVD
- •Hot Filament Technique

"Atomically" flat surface with mono-atomic steps

A. Maynev, G. Dujardin, New Diamond and Frontier Carbon Technology 15 (2005) p. 265.

Fraunhofer Institut Angewandte Festkörperphysik

- Unpinned Surface Fermi level
- High quality surface with minimized defect density
- Schottky-Mott Law ok ?

Schottky Barrier Hight: $q\Phi_{Bn} = q(\Phi_m - \chi)$

But:

- Data in literature does not show NEA properties
- 1.2 eV shift

$$Q_{sc} = qN_DW = \sqrt{2q\epsilon_s N_D(V_{bi} - V)} \qquad C/cm^2$$

$$C = \left| \frac{\partial Q_{sc}}{\partial V} \right| = A \sqrt{\frac{q\epsilon_s N_D}{2(V_{bi} - V)}} = \frac{\epsilon_s}{W} \qquad F/cm^2.$$
Equation 10 can be written in the form
$$\frac{1}{C^2} = \frac{2(V_{bi} - V)}{A^2 q\epsilon_s N_D} \qquad Built-in Potential Acceptor Density$$
Doping Profiling as function of x:
$$\frac{-d(1/C^2)}{dV} = \frac{2}{q\epsilon_s N_D} A^2$$

$$N_D = \frac{2}{q\epsilon_s A^2} \left[\frac{-1}{d(1/C^2)/dV} \right].$$
C= $\epsilon_o \epsilon_r A/W$
Gives Depth Gives Acceptor Density

Fraunhofer Institut Angewandte Festkörperphysik

Capacitance Voltage Spectroscopy

Diamond Interface To Buffer

IAF

Institut

Angewandte

Fraunhofer

Fraunhofer Institut Angewandte Festkörperphysik

Energy Levels of Buffers

Local Oxidation (STM): C(100)-(2x1):H

H-termination: ex-situ at 800 °C, for 1h

a): Atomically flat surface with mono-atomic steps

K. Bobrov, G. Dujardin, et al. Surface Science 528, p. 138 (2003)

Surface Degradation

Fraunhofer Institut Angewandte Festkörperphysik

H-terminated diamond in air is chemically not stable

Wet-Chemical/ Electrochemical Oxidation

Fraunhofer Institut Angewandte Festkörperphysik

IAF

but: degree of termination (100 %)?

Institut Angewandte Festkörperphysik

Plasma Oxidation:

Fraunhofer Institut Angewandte Festkörperphysik

Ketone or Top Site Model

Ether or Bridge Site Model

O₂-Plasma:

300 W, 25 Torr, 5 min.

Reconstruction (ann. 1100 °C)

1 nm

Figure 2 Clean diamond C(100)–(2 × 1) surface. a, The STM topography (10 nm × 10 nm) of the clean diamond surface recorded in the near-field emission regime ($U_{\rm biss} = 5.9$ V, I = 1.1 nA). b, Height variation of the STM tip along the line A. c, Topview of a monoatomic step on the two-domain (2 × 1) reconstructed surface. The coloured circles represent the carbon atoms belonging to the top four surface layers; the biggest circles represent the carbon-carbon dimers. The domains labelled as I and II represent the upper and lower terrace, respectively. The dimer rows are highlighted by shading, whereas the troughs between them are unfilled. The dashed line shows schematically the boundary between the domains.

c

Z (nm)

Tip displacement, 0 80 00

0.06

 $\Delta Z = 0.025 \text{ nm}$

X (nm)

H-free surface, clean diamond

(2x1) reconstruction with π -bondet dimers

K. Bobrov, G. Dujardin, et al., Nature 413, 616 (2001)

Fraunhofer Institut Angewandte Festkörperphysik

Fraunhofer Institut

> Angewandte Festkörperphysik

Fraunhofer Institut Angewandte Festkörperphysik

IAF

IAF

Institut

Angewandte Festkörperphysik

Surface Fermi Level (UPS/XPS): $\Delta E = 0.5 - 1.2 \text{ eV}$

Energy (111)-(2x1) reconstructed: 0.88 above E_{VBM} J.B. Cui et al. Phys. Rev. Lett. 81 (1998) p. 429. CBM EVAC (100)-(1x1):O 1.2 eV downward bending Murret et al, Semicond. Sci. Technol. 19 (2004) p. 1. $E_{a} = 5.47 \text{ eV}$ ---- E-0.36 eV VBM ΔE EVBM (100)-(2x1):H 0.3 eV downward Bending Murret et al, Semicond. Sci. Technol. 19 (2004) p. 1. (100)-(2x1):H 0.5 eV above E_{VBM} Surface defects Kono et al. Surf. Science 529 (2003) p.180.

IAF

Fraunhofer

Institut Angewandte Festkörperphysik

Real Schottky Contact

Schottky Properties: Clean and Oxygen Terminated Diamond Festkörperphysik

M. Werner, Semicond. Sci. Technol. 18 (2003) S41

Cleanness: SEM image of Bar-Contact structures

Fraunhofer Institut CS Angewandte Festkörperphysik

partially wiped in ethanol

Cleaning by contact mode AFM

Fraunhofer Institut Angewandte Festkörperphysik

Tapping Mode AFM Surface Morphology

> Contact Mode AFM Cleanning

Surface is covered with a thin (1 -10) nm thick adhesive layer.

AFM Image

SEM Image

B. Rezek, C.E. Nebel, M. Stutzmann Diam. and Rel. Mat. 13, 740-745 (2004)

AFM – carbon deposit in air and liquids

Fraunhofer Institut Angewandte Festkörperphysik

Surface layer is also attached to diamond in:

- Water
- Isopropanol
- not removable by ultrasonic cleaning

Fraunhofer Electrostatic Attraction of Ionized Nano-Particles

Accumulation of charged particles on the surface, in the water adsorbate?

Due to electrostatic force, only small particles will be attached

•CH Dipole

•CO Dipole

Institut Angewandte Festkörperphysik

Institut

Angewandte Festkörperphysik

Summary Surface:

H-terminated Surface

- Technique: H-plasma, H-hot filament
- Unpinned Surface Fermi Level
- Best interface for Schottky Metal Contacts
- In air not stable

Diamond surface oxidation:

- Techniques: wet-chemically (OH), electrochemically (OH), plasma (O)
- Not fully characterized with respect to: Degree of termination,

Surface defect density and distribution

Clean diamond surface

- Realized only in UHV at T > 800 C
- Missing Data about: Stability in air, Defect density

Polishing causes surface damage (not yet characterized!)

Optimization:

- 1) Polishing
- 2) Plasma Etching
- 3) Homo-Epitaxial Overgrowth
- 4) H-Termination

Bulk Properties

Hole Mobilities

Fraunhofer Institut Angewandte Festkörperphysik

T^{-3/2}: acoustic phonon scattering

T^{-2.8}: optical phonon scattering

Isberg et al. : time-of-flight on undoped CVD diamond

(Science 297, p. 1670 (2002): 3800 cm²/Vs)

Reggiani: Time-of-flight on undoped natural diamond

Dean and Konorova: Hall Mobilities

Dr. Okushi et al. AIST: Hall effect on boron doped CVD diamond

T^{-3/2}: acoustic phonon scattering

Isberg et al.,: Time-of-flight in undoped CVD diamond (Science 297, p. 1670 (2002): 4500 cm²/Vs)

Nava: Time-of-flight on natural undoped diamond Konorova: Hall effect Redfield: Hall effect

Koizumi et al.: Hall effect on Phosphorus doped diamond

Festkörperphysik

Effect on transport and recombination not clear!

Zhou et al. PRB 54 (1996) p. 7881 N. Mizuochi et al. DRM .

Defect Model: X. Zhou, G.D. Watkins et al. PRB 54 (1996) p. 7881

Institut Angewandte Festkörperphysik

EPR of substitutional nitrogen (g=2.0024).

Satellite position depends on magnetic field with respect to (111)-orientation

Dislocations

Fraunhofer Institut Angewandte Festkörperphysik

- lattice distortion
- grow from substrate into epi-layer
- killer of high voltage devices

• Minimization:

soft etching of substrate befor growth , to remove distortions

Institut

Angewandte Festkörperphysik

J. Isberg et al., Diam. Rel. Mat. 13 (2004) 872.

Nitrogen not important 10⁻⁵ N-content $< 10^{15}$ cm⁻³ 10⁻⁶ μτ_e μτ (cm²/V) 10⁻⁷ N-content: (10¹⁵ -10¹⁶) cm⁻³ Polycrystalline CVD Diamond 10⁻⁸ 3 5 4 1 2 Sample

J. Isberg et al., Diam. Rel. Mat. 13 (2004) 872.

Fraunhofer Institut Angewandte Festkörperphysik

Fraunhofer Institut

> Angewandte Festkörperphysik

Grain boundary effect: best SCD

Polycrystalline CVD Diamond

Fraunhofer Institut

Angewandte Festkörperphysik

Model:

pos. applied el. field

short circuit illumination

Traps or defect, can be occupied by electrons and holes!

Deep Defect Characterization (ODLTS)

Institut Angewandte Festkörperphysik

Fraunhofer Institut Angewandte Festkörperphysik

Defect Annealing

Fraunhofer Institut Angewandte Festkörperphysik

Fraunhofer Institut

> Angewandte Festkörperphysik

T > 600 K

Institut

Angewandte Festkörperphysik

- Minor problems from: Defects (H1) Nitrogen (low density)
- Major problems from: Grain boundaries (dislocations?)

Defect characterization not established:

V NV NiN

• • • • • • • •