

Peter Fischer <u>Michael Ritzert</u> Martin Koniczek technisc

informatil

Overview of Circuit Concepts

... and mixtures of these concepts

01.09.2006 A Multi Channel ASIC for High Resolution Time Measurements LS Schaltungstechnik & Simulation

2

Ring Oscillator: Principle

- Principle:
 - a ring oscillator generates thermometer code time stamps. Needs overall inversion!
 - a ("slow") coarse counter generates the MSBs
 - input signal is used to latch values
 - Ring oscillator can be locked to a reference clock with a PLL
- + fairly simple, "digital" design
- + infinite dynamic range
- + no calibration required (with PLL), guaranteed stability
- limited bin size (but several times better than with counter)

Ring Oscillator: Design variations

- Resolution can be increased by:
 - using multiple channels with delayed stop signals
 - running several phase coupled ring oscillators
 - using slow / fast buffers between ring oscillator and latches
- Use "single ended" CMOS logic
 - · simple
 - · issues: supply sensitivity, ring oscillator frequency range, linearity (inversion!)
- Use differential logic
 - · uncommon
 - more complex, if everything is done differentially
 - · trimming simpler

Design Issues

- Design goals are
 - minimal bin width = max. resolution (aim at σ = 20ps)
 - · linearity
 - · dynamic range
 - · low dead time = high double hit rate (aim at 10 MHz)
 - low power (not so critical in Diamond: few channels, cooling possible, preamps and discriminators will be "high" power components)
 - · easy calibration
 - stable operation (with temperature, power supply etc.)
 - · multi-chip operation (maybe not required for diamond)
- Watch
 - matching between devices: better for larger devices, but that costs power and/or speed
 - radiation hardness
 - technology scaling (this favors "digital" designs)

5

Differential Logic

- Current I_{bias} is steered to left or right load circuit with a differential pair
- The load circuit converts to current step to a voltage step
- 'ideal' load circuit:
 - The V_{hi}-level is fixed by the maximum possible input voltage to the switch block
 - The V_{lo} -level is fixed by the voltage swing required to 'fully' switch current in the switch block.
 - The plateau at $\frac{1}{2}I_{\text{bias}}$ guarantees equal rise and fall times (C_{load} is charged/discharged with $\frac{1}{2}I_{\text{bias}}$)
- If V_{hi} and V_{lo} are independent of I_{bias} , the speed of the gate can be varied significantly with I_{bias}

01.09.2006 A Multi Channel ASIC for High Resolution Time Measurements LS Schaltungstechnik & Simulation

Submission History

- TC3: AMS 350nm. Results presented here last year. Timing resolution σ≈35ps.
- TC_UM1: First UMC 180nm submission. Run paid for by GSI. Timing resolution σ≈25ps.
- TC_UM2: Current chip. UMC 180nm.

TC_UM2 Block Diagram

- Block diagram shows only relevant parts
- Note that the differential inputs have an additional (analog) discriminator on this chip

01.09.2006 A Multi Channel ASIC for High Resolution Time Measurements

LS Schaltungstechnik & Simulation

TC_UM2 Layout

- Size: 3.24x3.24mm²
- 15 Channels

01.09.2006 A Multi Channel ASIC for High Resolution Time Measurements

LS Schaltungstechnik & Simulation

Test Setup

• We have developed a very compact USB based test setup.

01.09.2006 A Multi Channel ASIC for High Resolution Time Measurements LS Schaltungstechnik 10 & Simulation

Measurements: Ring Oscillator Speed

- Accurate measurement of the VCO speed possible on a full-speed debug output
- Tuning range ~37 80 ps
- Standard operating point: 50 ps binwidth @ 160uA per stage (from a 1.8V supply)

Hit bins for different delays

01.09.2006 A Multi Channel ASIC for High Resolution Time Measurements

LS Schaltungstechnik 12 & Simulation

Summary

- We pursue a ring oscillator approach using differential logic
- Single channel resolution σ < 20ps available today in 180nm technology All non-linearities are included in this figure!
- Advantages of the ring oscillator are:
 - stability (if locked to reference frequency with a PLL)
 - · "infinite" dynamic range (with wide "coarse" counter)
 - very small dead time
 - fair power consumption (<20mA @ 1.8V per channel + VCO)

