Fast Signal Processing: From the Detector to the TDC, an experimentalists (non expert) point of view

Wolfgang Koenig for the HADES Collaboration

Menu:

- Diamond Detectors at Hades (Boundary conditions)
- Signal / Noise & Risetime: general considerations
- Response of fast MMICS Amp's (Measurements and Simulation)
- A Proposal for optimized MIPS Diamond detectors (Simulation)
- Discriminator measuring Signal Time and Charge simultaneously
- New HADES TDC board
- A Proposal for a 10 Ghz (peak Intensity) HI Diamond Detector Set
- Summary, Acknowledgment

Chairman will stop me

Diamond Detectors at HADES: Requirements and Boundary conditions

Requirements

- Beam diagnostics
- Beam Intensity Monitoring
- Time reference Signal
- Reject peripheral collisions

Boundary Conditions

- Minimize RICH Load
- Do not spoil 2nd Level Trigger
- Ignore Noise from other Detector Systems

50 µm Diamond, 4 X-Stripes (front), 4 y-Stripes (back), integrated preamps

Vertical and horizontal beam profiles (AL-Beam)

Efficiency Start: > 98% Veto removes 95% of Start signals (3%) interaction length target) Amplifiers are radiation hard (10⁶-10⁷ Ar ions) 0 0

PC-Board: 0.2 mm thick, 48 mm Diameter Diamonds provided by R. Gernhäuser

Time resolution

10 years old booster stage

- Unexpected bad time resolution
- Signal ca. Factor 4 below expectation

100µ Detector, single sided readout (8 stripes)

Basics

Ideal (noise free) amplifier with input impedance R: Noise: $\sqrt{4kTRv}$

k= Boltzmann Constant, T= Temperature, R= Resistor Value, v = frequency

Noise Figure:

Real amplifier provides further Noise (specified in DB, logarithmic scale)

Some Noise figures for MMICS (Monolytic Microwave Integrated Circuits)

MMIC Type	Noise Figure	Voltage Noise increase		
BGA2712	3.9	1.57	Noise close to	
BGA2748	1.8	1.23	ideal amplifier	
GALI - S66	2.9	1.4		
BFG310	1.0	1.12	Transistor	

MMIC	Measured Rise	Frequency	Calculated	Measured
Туре	Time [ps]	Range [Ghz]	Noise [µV]	Noise [µV]
BGA2712	140	1 -3	20.7	24
GALI - S66	350	0.4 - 1.2	13.1	13

Measurements done by Andrei Caragheorgheopol

Detector Response (Toy Model)

Induced current: $I(t) = 2*Q_{tot} * v_{Drift} / d * (1 - t/T_{max}) \qquad I_{MAX} = 1.2 \ \mu A \text{ for MIPS (used 1 } \mu A), \quad v_{Drift} = 1 \text{ ns/100} \mu m$ $Q_{tot} = \text{ total electron charge created, } d = \text{ detector thickness, } T_{max} = \text{ maximum drift time}$

50 μ thickness, 10 pF capacitance (10*10 mm² , 4 stripes)

400 μ thickness, 1 pF capacitance (different Y-scale) (3*3 mm²)

Comparison of a 50µ and a 400µ Diamond (fast and medium fast amplifiers with 50 Ohm impedance)

MMIC	Signal [µV]	Noise [µV]	Measured Noise [µV]	Ratio S/N	Risetime [ps]
BGA12, 400µ	677	396		1.71	165
BGA48, 400µ	565	263	192	2.15	192
Gali66, 400µ	549	271	184	2.02	292
BGA12, 50µ	180	174		1.03	237
BGA48, 50µ	156	106		1.48	243
Gali66, 50µ	181	157		1.15	230

Measured noise not corrected for limited frequency range and 2 stage amplification

Simple Signal / Noise Considerations:
1 μA peak current in 50Ω (1pF): 48 μV
measured input noise (fast MMIC): 24 μV
Signal / RMS-Noise = 2

Trigger Threshold >= 5 * RMS Noise Signal / Threshold = 0.4 @ 1µA Peak

Readout from both Sides (Crosstalk)

25% attenuation due to two sided readout (4 Stripes)
Inverted (bipolar) signal on neighbored stripes

Measured crosstalk (Stripe Multiplicity, Ar Beam, 10⁶/s)

BGA2712 (fast response on bipolar crosstalk)

Gali-S66 (inverting, crosstalk reduced by factor 3)

3 Stage Amplification (Inverting and non Inverting)

Rise Time: (Input Pulse: 0.25 ns decay time, 20µA peak, 10pF) ■ 230ps (Invert, BGA2748, BGA2712, Gali-S66) ■ 260ps (non Invert, BGA2748, Gali-S66, Gali-S66)

4 fold Amplifier BGA2712/Gali-S66 with HV / Test input Supply: 5.5 to 12V

Rectangular Test Signals:

•BGA2748: misleading response

•Gali-S66: 360 ps rise time agrees with measurements

Layout of a Diamond Detector with a Transistor Amplifier (ca 1kOhm impedance) attached.

Bias Voltage supplied via Signal cable

Spice Simulation

Schematics including 'virtual' components

Signal/Noise can be optimized further (increasing risetime)

Pulse shapes before and after amplification

Noise spectrum before (blue) and after shaping (red)

Input impedance and capacitance as function of collector current: • 2.05 mA: 1.1 k Ω , 2.5 pF • 0.93 mA: 2.3 k Ω , 2.1 pF Large input capacitance due to feedback capacitance * Voltage gain

Baseline Shift

Diamond with a dual Transistor Amplifier

Optimize Signal / Noise further:

- High Impedance 1st stage (10 kOhm, 1.4 pF)
- Booster Transistor (25mA @ 2V, 50mW)
- Externally optimized signal shaping (high rates)

Schematics (above) and possible Layout (right)

Large Filter Capacitor & HV protection resistor serve all readout channels (segmented readout)

Additional Shaping via external Booster Stage (further signal shaping)

Wide Noise Frequency Response (Unipolar Signal)

Narrow Noise Frequency Response(Bipolar Signal)

The best signal / noise ratio at a reasonable rise time

- Signal/Noise =33.6
- Rise Time = 1.94 ns
- 110 MHz (peak intensity/channel)

1st stage (Out1):

Integration over all electron/hole pairs last stage(Out2): brute force shaping

Shaping (Out2) removes low frequency noise (Out1)

Lower Limit on time resolution (∆T / (S/N):
one stage preamp: 75 ps
two stage preamp: 58 ps

Leading Edge Discriminator

Encode Charge in Pulse Width
 TDC measures leading and trailing edge
 No need for separate charge measurement

IN THR

Schematic circuit for a simultaneous time and charge measurement (Max9601, 2GHz; Opa690,1.8V/ns)

Trailing - Leading edge, Pulse Height = 80 mV Resolution (70 ps) mainly determined by trailing edge

Monitoring requires Prescaler

MC100EP33 (4 GHz)

- downscale by factor 4
- derandomize

500 Mhz FPGA for monitoring (12 Scalers, VME Interface)

Veto Detector (reduces rate by factor > 20)

Anti Coincidence between opposite stripes and neighbored stripes on backside Remaining rate: 2% of ion rate.

Start – Veto Anticoincidence (Reaction Trigger, Timing Signal)

- Discrete Components (PECL) or FPGA (Virtex5)/ CPLD(MachX0)
- Integrated FPGA/CPLD solution currently not fast enough ?
- Discrete Solution available (Width = 2 -12 ns)

The Hades TRB Board (TDC)

- 128 Channels, Multi Hit, Leading Trailing edge
- Standalone Board (Linux PC, 100 Mb Ethernet)
- Single 48V Supply
- 1st, 2nd level (delayed) Trigger Handling
- Test Pulse outputs, DAC Threshold controls
- Scalable (Switch 10 * 100Mb In, Gb Out -> PC)

- 100 ps binning (25ps,32 channels)
- Resolution 29ps (measured for 100ps binning)
- Adjustable Time Window, no Delays needed
- max 80 kEvents/s 1st Level rate
- 2^{nd} Level: 1.5MB/s \rightarrow 10MB/s (next version)
- Software controlled data formatting

M. Traxler, M. Kajetanowicz, M. Palka, R. Trebacz

Summary

- MMICS provide Signal/Noise close to the theoretical limit.
- Placing 1st stage amplifier close to detector improves signal/noise.
- Charge integrating amplifiers (at Detector) with optimized (external) shaping might allow to measure MIPS at high rates (>120 Mhz Peak) with good time resolution (<100 ps).
- Discriminator / TDC combination allows charge (Pulse height) measurements without additional circuitry.
- 10 Ghz (Peak intensity) Start-Veto Diamonds seem to be feasible regarding the full readout chain.

Acknowledgment

GSI EE-Department in particular:

M. Traxler, E. Badura (telling me basics)

M. Wiegand, G. Eidmann, D. Dugan, A. Muhn (technical support)