

Characterization of Polycrystalline CVD Diamond Detectors with the Munich Heavy Ion Microscope SNAKE

Sabine Schwertel

August 31, 2006

3rd NoRHDia Workshop at GSI

- Motivation
- SNAKE
- Data
- Summary

- large area (50x50 mm²) \rightarrow polycrystalline CVDD
- + high position resolution \rightarrow segmentation ~140 μm
- high efficiency \rightarrow edge effects
- thin material d < 100 μm

Suppliers:

- Elementsix
- Fraunhofer IAF Freiburg

Detector

Diamond substrate

- 10x10 mm²
- metallization: pure Al
- segmentation in x and y
 - rough pitch: shadowing technique, 50 µm wire grid
 - fine pitch: lithography, 64 strips per 8 mm
- mounted on universal board
- charge integrating readout for every channel

Efficiency

Local CCE

\rightarrow grain size

- \rightarrow Test of different diamond substrate materials:
 - E6: 120 µm as grown
 - IAF: 50 µm polished
- Grain size is dependent on
- thickness
- manufacturer
- production techniques and parameters

\rightarrow High resolution scan of strip interface with SNAKE

SNAKE - Superconducting Nanoscope for Applied nuclear physics (Kernphysikalische) Experiments

- Ion beam with a diameter of about 1 μ m
 - 48 MeV Li
- Scanning point by point
 - 60 x 120 points
 - 128 particles per point
- Increments
 - rough scan: 10 μm in x-, 5 μm in y-direction
 - fine scan: 3 μm in x-, 2 μm in y-direction
- Triggersignal from a Si diode

SNAKE - Beam alignment

SNAKE

Diamond substrate as grown

Diamond substrate as grown

Metal grid

ПП

Signal map

rough scan: 505x560 µm² 4x4 2mm strips

IAF, 50 μm

Y-Position [µm]

100

upper strip

Fine scan

rm_1 7200 24.24 82 16.8 21.32

 Entries
 7200

 Mean x
 24.24

 Mean y
 82

 RMS x
 16.8

 RMS y
 21.32

 Integral
 4.071e+05

Entries

120 140 160 180 200

80 100

60

40

IAF, 50 µm, 4x4 2mm strips

 \rightarrow no significant difference

120 μm 50 μm

17

High resolution detector

Sabine Schwertel

Signal map

fine scan: 200x280 μ m² 64x4 110 μ m x 2 mm strips

E6, 120 µm

Summary

- The crystalline structure can be seen in CCE.
- The crystallites are of similar size for both thicknesses but different production techniques.
- The inefficiency between the strips is
 - about 10 to 20 µm for 30 µm gap
 - about 40 µm for 50 µm gap

The substrates from Elementsix and Fraunhofer Institute are comparable in the measured features.