

Roman Gernhäuser, TU-München

High Rate Diamond Detectors for Heavy Ion Tracking and TOF

- detector requirements and layout
- fast timing electronics
- APV based strip readout
- radiation hardness

Measurement of all kinematic variables in a HI reaction Different tasks: High resolution tracking in the super FRS, radiation hard (SFRS) 10⁶ cm⁻¹ s⁻¹ 2 x TOF (SFRS – target) (reaction products) low material budget

Requirements for Tracking

	Super-FRS			R3B Target, Magnet		
Dimensions	50 mm x 400 mm S-FRS			40 mm x 40 mm R3B (1) 300 mm x 200 mm R3B(2)		
Rates	10 ⁸ 1/s			10 ⁴ 1/s		
Material budget	< 500 mg			asap.		
Resolution	σx [mm]	σy[mm]	σt [ps]	σx [mm]	σy[mm]	σt [ps]
PID FRS-R3B (40 m)	3	5	100	3	5	100
PID in R3B (10 m)				0.2	3	40
high resolution mode	0.5	5	100	0.1	0.1	100
high res.TOF spect.				0.1	0.1	5

Why PC-CVDD

TOF and position measurement with a single layer of 100 μm CVDD

material available and reasonable price ($20 \ \mu m - 1 \ mm$)

diameter up to 75mm

fast signal collection

radiation hardness

- C¹² 1-2 AGeV 10¹² cm ⁻²
- U²³⁸ 1 AGeV 10¹⁰ cm⁻²

low noise

- low dielectric constant low cap.
- small leakage current low noise

collection distance is less important in case of heavy ions

• > 99% of charge distribution above 10 ke, $\Delta E = 10 MeV$

R3B Detector Layout

tracking layer:

- 50 x 50 mm, d = 100 µm, PC-CVDD
- 140 μm pitch (115μm strips, 25 μm gap)
- only digital position information
- multiplexed readout in vacuum

timing layer:

- 50 x 50 mm, d = 100 µm, PC-CVDD
- 8 rate matched strips, y information, trigger
- analog preamplification in vacuum
- discriminator and TDC @ 5 m distance

FRS Detector Layout

New HADES Start - Detector

4 x 4 strips xy

Al coating using a wire grid

 $50\,\mu m$ IAF material

new preamps allow to mount the detectors much closer to the target

low power in vacuum

Further amplification DBA-II (gain 130)

Aug. 05 – Test:

- new preamps
- TOF resolution
- efficiency

Time Resolution 50 µm Detector

Signal shape

rise time limited by 1GHz scope and cables ? positive and negative coupling of neighboring strips

CMS Readout Chip APV25

Readout Chip for CMS Detector

- 128 channels
- radiation hard (0.25 μ m)
- 8 MIPS dynamic range (100 mV/mip)
- analog pipeline 4 μ s
- 40 MHz readout
- 44 µm pitch !
- 2.3 mW /ch.
- •Vacuum suitable

Effective thickness 20% of Si CCE 20% \longrightarrow W = 13 eV

8x5x5x3.6 = 720 mips linear range Z < 27 could be linear limit in HI

Several ideas like charge split, over range behavior, or even thinner CVDD have to be tested.

APV Features

- Noise figure: 246 e + 36 e/pF
- 3000 e (SNR) with 60cm lines
- 50 ns CR-RC shaper
- both polarities
- discharge path
- peak mode for low rates
- deconvolution mode for high rates analog FIR filter included.

Operation:

pipeline of 128 x 192 columns write pointer circulates continuously with 25 ns intervals. column x marked by trigger bidirectional differential current output using 2 lines ($1\pm$ mA)

Compass DAQ System

APV is used in Compass for many k ch.

But :

GSI has different requirements !

Current scheme of R3B readout

The GTB Bridge Board (GTB³)

<u>SAM3</u>

GTB³ GSI development DSP based data concentrator 2 independent GTB interfaces master/slave data request on trigger busy handling subevent building

Multi event capability

DSP used e.g for generating thresholds

MBS

APV Test Board

Check readout scheme, crosstalk, range Different readout on both sides

3rd NoRHDia Workshop 2006@ GSI

Test of Radiation Hardness with HI

Task List

Radiation Hardness

- Some samples show persistent photo current (PPC) after irradiation
- limit O^{16} 112 MeV 10¹³ cm⁻² (prove single measurement)

Signal Properties

- coupling between channels
- time resolution worse than expected (may be due to electronics)
- walk correction should be possible with APV readout
- test of APV and fast timing electronic on a single detector .

Detector Production

- shadow technique for bigger structures
- photo lithography (first problems solved)
- large area substrate handling still under investigation (50 x 50 mm, $d = 50 \mu m$ sample in house but more than fragile)