

The fission fragment TOF spectrometer VERDI

Cezar Negoita, Stephan Oberstedt, Carlos Chavez de Jesus, Thierry Gamboni, Wouter Geerts, Franz-Josef Hambsch, Shakir Zeinalov

Institute for Reference Materials and Measurements (IRMM) Geel, Belgium

> http://www.irmm.jrc.be http://www.jrc.cec.eu.int

Delayed Neutron Data

✓ The subgroup Delayed Neutron Data of the Working Party on International Nuclear Data Evaluation Co-operation (WPEC) of the Nuclear Energy Agency (NEA-OECD) ⇒ reduce the uncertainties in the delayed neutron data for the major actinides, ²³⁵U, ²³⁸U and ²³⁹Pu.

Generation IV reactors

- ✓ improve nuclear safety
- ✓ improve proliferation resistance
- ✓ minimize waste and natural resource utilization
- decrease the economic cost

The fission fragment TOF spectrometer VERDI

 delayed neutrons are responsible for the ability to control the nuclear chain reaction in a reactor

current calculation-to experiment discrepancies
result in undesirable
conservatism in design and
operation of reactor control
systems.

Nuclide	$\mathbf{E_n}$	V _{d, calc}	V _{d, exp}	v _{d, calc} / v _{d, exp}
²³³ U	thermal	0.88	0.66	1.32
²³³ U	fast	0.95	0.73	1.31
²³³ U	14 MeV	0.34	0.42	0.82
²³⁵ U	thermal	1.71	1.65	1.04
²³⁵ U	fast	1.91	1.71	1.12
²³⁵ U	14 MeV	0.79	0.93	0.85
²³⁸ U	fast	4.27	4.51	0.95
²³⁸ U	14 MeV	2.39	2.73	0.88
²³⁹ Pu	thermal	0.61	0.62	0.99
²³⁹ Pu	fast	0.69	0.66	1.05
²⁴¹ Pu	thermal	1.34	1.56	0.86
²⁴¹ Pu	fast	1.45	1.63	0.89
²⁵² Cf	SF	0.74	0.86	0.86

> The measurement of massand energy-distributions of fission fragments with high resolution prior to and after prompt-neutron emission is indispensable!

The Delayed Neutron Yield has a variation of up to 3.5 %

Fragment yield differences as a function of mass (after Hambsch et al.)

Joint Research Centre

VElocity foR Direct particle Identification

- ✓ Two-arm time-of-flight sections to measure the velocity of each individual fission fragment (FF) \Rightarrow pre neutron-emission masses
- \checkmark Subsequent measurement of the FF kinetic energy \Rightarrow post neutronemission masses

VERDI objectives

- ✓ Mass resolved post-neutron fission fragment yields;
- ✓ Mass resolved pre-neutron fission fragment yields;
- ✓ Precise delayed-neutron pre-cursor yield-distribution;
- ✓ Prompt neutron multiplicity → as a function of the fragment initial mass and kinetic energy, i.e. of the total excitation energy.

The fission fragment TOF spectrometer VERDI

fragment mass (arbit. units)

fragment mass (amu)

 ✓ Set-up of the time-of-flight tube with an energy-sensitive detector device energy resolution : △E/E = 0.005 for fission fragment kinetic energies timing resolution : △t = 50ps
⇒ fragment mass resolution : △△A > 130

For the successful construction of the high mass-resolving fission-fragment telescope very fast timing detectors are needed.

The CVD diamond detector seems to match best the technical requirements defined within the VERDI design.

The polycrystalline CVD diamond detector specifications:

- 10 x 10 mm active area;
- 100 µm thick

Evolution of the pulse height and count rate at different bias voltages

The fission fragment TOF spectrometer VERDI

EUROPEAN COMMISSION Joint Research Centre

The fission fragment TOF spectrometer VERDI

150

200

The fission fragment TOF spectrometer VERDI

Evolution of the detection spectrum

Channel

EUROPEAN COMMISSION **Joint Research Centre**

Conclusions and Outlook

- The tested CVD detectors do not fulfill all technical requirements ۲ (stability, reproductibility);
- Implementation and test of a MCP (Microchannel Plate) detector; ۲
- **Optimization of the timing and energy resolution of the particle** ۲ detectors.

Microchannel Plate Detector

- a compact detector and event amplifier of energetic photons and charged particles;
- consists of about 10,000,000 closely packed channels with the diameter of each channel approx. 10 microns;

 enable single hit counting with durations in the nanosecond range, and they are unique to detect heavy ions in the keV range.

16

Objectives

- ✓ Measurement of post-neutron fission-fragment distributions using a suitable spontaneous fission source;
- Determination of the mass-resolving power of the spectrometer;
- Determination of the detector efficiency;
- Extension of the Si-cluster to 19 detectors;
- Extension to a two-arm spectrometer in order to obtain pre- and post neutron fission fragment data at the same time

this will allow for the first time a mass- and kinetic energy-resolved measurement of prompt neutron multiplicities

