CVD Single Crystal Diamond synchrotron X-ray beam monitoring and surface characterization tests at ESRF

- J Morse, M Salomé, E Mathieu
- E Berdermann, M Pomorski
- J Grant, W Cunningham
- C Kenney

- ESRF Grenoble
- GSI Darmstadt
- University of Glasgow
- Mol. Bio. Consortium Stanford

Acknowledgments

D. Twitchen, H Godfried

Ph. Bergonzo, M. Nesladek

P. Muret, M. Wade

M. Mermoux

Ch. Nebel

J. Butler

<u>J. Härtwig</u>, P. van Vaerenbergh, R. Barrett, H. Gonzalez, G. Naylor, I. Snigireva, A Rommevaux, ID02/ID19/ID21 staff

EU-FP6 Bioxhit and I3HP-NoRHDia funding

Element Six (Ascot & Cuijk) CEA (Saclay) LEPES-CNRS (Grenoble) LEPMI Univ. J. Fourier (Grenoble) AIST (Tsukuba) Naval Research Lab' (Washington)

ESRF (Grenoble)

Talk Overview

- 1. Synchrotron X-ray beam monitoring requirements, and why single crystal diamond?
- 2. Surface and bulk characterization tests of CVD diamond sample material
- 3. CVD device 'XBIC' mapping tests at ESRF-ID21

Synchrotron X-ray Beam Monitoring: what is needed?...

Transmissive sensors \rightarrow permanent, in-beam measurement of:

Intensity: typical need is 1%...0.1% (relative) accuracy & linearity for *sampling* times ~msec ... ~1 secs

Position / Vector (& Profiling):

Synchrotron beam size at samples is now $\sim 1... \sim 100 \mu m$, with 50nm FWHM achieved Required beam stability $\sim 10\%$ of beam size Profiling matrix $\sim 10 \times 10$ points ?

X-ray fluxes:

~10⁸ photons/1µm²/s ... 10¹³ photons/(100µm)²/s photon energies ~ 1 ... 50 keV, $\Delta E/E \sim 10^{-4}$

→ max. *absorbed* power: < mW (monochromatic beam)

but >10W *in 'white' beam applications!!*

...why diamond?

 $Z = 6 \rightarrow$ low specific X-ray absorption / beam scattering

High charge carrier saturation velocity (\sim 3x10⁷cm/s) and low dielectric constant (5.5)

-> fast pulse response (~1nsec in 50µm thick device) synchrotron 'pulse by pulse' analysis

wide bandgap energy (5eV), excellent thermal/mechanical properties

-> low leakage currents at high temperature, high heat load 'white' beam monitoring possibility

why single crystal material ? beam coherence preservation: no grain-boundary artifacts →minimal bulk scattering X-optics surface quality

E Berdermann/E6

Courtesy Ph. Bergonzo

- 1. Synchrotron X-ray beam monitoring requirements, and why single crystal diamond?
- 2. Surface and bulk characterization tests of CVD diamond sample material
- 3. CVD device 'XBIC' mapping tests at ESRF-ID21

Methods of sample analysis tested:

Material:

BULK

Raman confocal micro scanning, visible/UV microscanning fluorescence spectrometry

cryogenic fluorescence spectrometry, visible, UV, electron excitation

electron spin resonance: impurities at (sub)-ppB level

X-ray topography; X-ray small angle scatterinng

AFM and laser optical interferometry

Device:

BULK &

SURFACE

XBIC (X-ray induced current) mapping: near surface or bulk

charge injection

SURFACE Scanning electron microscopy EBIC: near surface charge injection (radiation aging tests?)

Microscanning Raman E6 sample 70310

*Raman maps made with sampling $\sim 2\mu m$ lateral spatial resolution, at 50 μm raster grid

White light

Crossed

polarizers

'fingerprint twirls' are artifacts in image display only

-1333.80

Raman* intensity (arbitray scale)

Raman* center frequency (cm⁻¹) n.b. not precisely calibrated!

-1333.75 Ra wid (cm -1.65 (cm -1.60

Raman* width (cm⁻¹)

Courtesy Michel Mermoux LEPMI-ENSEEG, Grenoble Dec 2003

Apollo Diamond sample No.2186

-40000

Raman* intensity (arbitray scale)

Courtesy Michel Mermoux LEPMI, Grenoble Dec 2003

Cryogenic fluorescence spectrometry: E6 70310 and Apollo 2186 Samples

Courtesy P. Muret, M. Wade LEPES-CNRS Grenoble

ESR measurements: Sumitomo and E6 CVD samples

- (a) SumiCrystal (b) e6, scan times is 15 times longer than that of (a).
- P1 center in SumiCrystal at $10^{14}/\text{cm}^3 \sim 10^{15}/\text{cm}^3$.
- P1 center in E-Six is under detection limit (<10¹⁴/cm³).

Carbon dangling bond defect (at g=2.0026) \sim 5×10¹⁴/cm3 "NV⁻ and VH⁻ were not observed..."

Courtesy Ch. Nebel, H. Watanabe AIST Nov 2005

Atomic Force Microscopy:

E-Six Ascot sample: resin wheel polished

MDS3.015 Side 1 rms 0.60nm

E6 Ascot: *resin wheel* polished surface ??

Topography [nm]

E6 Ascot: surface treatment ??

E6 Ascot: resin wheel polish 'tadpoles'

secondary electron microscopy at 20kV on Ni/Pd/Au coated surface

Pomorski, Nohrdia talk 2005, annealed 600°C/30mins naked sample (microscope image)

E6 Ascot sample after *scaithe polish* at E6-Cuijk*

E6 Ascot sample after scaithe polish at E6-Cuijk*

side 1 mds-5-am-2-017 0.65nm rms 6.0µm

E6 sample MDS-5, thinned to 40µm at E6-Cuijk

~Mar 06

*courtesy Herman Godfried

mds-5-am-2-017 0.65nm rms

mds-5-am-008 1.9nm rms

AFM ESRF sample MDS1 (Mar05), thickness 350 µm, E6 resin wheel polish then scaife and superpolish by J Butler-NRL

Laser Optical Interferometry PROMAP 512 profilometer-ESRF

P321233A-P3-a1.8DP

Element Six electronic grade CVD sample 02-12-05A, thickness ~350 µm E6 resin wheel polish, then scaife and superpolish by J Butler-NRL

E6-70310-FB-a1.SDF 8.441 nm 8.458 nm 8.458

Element Six electronic grade CVD sample 70310 (~10-03), thickness 100µm E6 scaife, metal carbided, stripped, then superpolished by J Butler-NRL

E6 CVD samples at ESRF:

summary of optical interferometry

0.04 0.05

0.01

002

CVD diamond, electronic grade LESC LSN 021205L	~330µm
CVD diamond, electronic grade ELSC ESRF021205C	40µm
JH sample HPHT diamond: 9.25x3.3x100µm (1-1-1)	100µm
Jahre Q41 mica	25µm
lupolen (calibration sample)	3300µm

courtesy Boesecke, Panine May 06

Topography data, ESRF ID19

(A) E6 Sample 70310, Laue
(B)
Apollo sample, Bragg
white beam
Dec 2003

E6-Berdermann samples C and D Laue white beam

Oct 2004

Topography data, E-6 'electronic grade' CVD

Transmission (220 and 040) of E6 'electronic grade' diamond plates MDS-1...5, ~3.6 x 3.6 x 0.35 mm³ (May 2005)

EBIC measurements: E6 sample, Ni-TiC electrodes

- 1. Synchrotron X-ray beam monitoring requirements, and why single crystal diamond?
- 2. Diamond X-BPM tests at the ESRF ID21 X-ray Microscopy Beamline

3. CVD device 'XBIC' mapping tests at ESRF-ID21

Diamond 'XBIC' mapping at ESRF-ID21

thin plate crystal sample with 'X-ray transparent' metal electrode contacts Ti, Mo, ...Ni, Al diamond bulk acts as solid state 'ionization chamber' signal readout 'DC' or RF (synchrotron bunch clock frequency 352MHz)

Beam Monitoring application: position and intensity

multiple electrodes, e.g. simple quadrant motif, diffusion splitting of charge

 \rightarrow beam 'centre' by weighting four electrode currents A, B, C, D

→ Sum currents ~ beam intensity (ε_D = ??)

ESRF-ID21 X-ray Microscopy Beamline

mapping of contacted CVD diamonds:

ESRF beam 50ps pulses at 3nsec-3µs intervals, energy (ID21) 2 ... 7.5 keV

Fresnel zone plate focuses the X-beam to a *sub-micron* probe. Unwanted diffraction orders from the zone plate are removed by a central stop and an order selecting aperture (OSA).

surface or bulk charge injection

Single crystal quadrant X-ray mapping (XBIC) ESRF ID21 (May 2005)

Element Six 'electronic grade' sample 70310 *thickness 100µm*

20nm+20nm sputtered Cr, Au contacts [GSI-Darmstadt Target Lab'.]

PCB sandwich assembly with sprung microprobes

Diamond on submicron x-y scanning stage

am

ESRF-ID21 X-ray Microscop

focus $1.2 \times 0.4 \mu^2$ FWHM, ~5x10⁷ photos/sec at 7.2keV

I-V curves

Cr-Au contacted 100mm plate with/without beam

Signal linearity with beam intensity

Incident beam flux (X-ray/sec in 0.4 x $1.2 \,\mu m^2$ fwhm spot)

Quadrant isolation and uniformity of response

X-ray response ('dc' signal current) of individual quadrant electrodes as microbeam is raster-mapped over entire surface

 $1 \times 0.4 \mu^2$, ~10⁸ photos/sec at 7.2 keV

Cr-Au contacted quadrant device: 'dc' measured position response

For large beam (> 50μ m), device 'crossover response' is ~ line integral across the beam intensity profile

For small beam (< 10µm), crossover response is ~ convolution of photoelectron thermalization range and lateral charge diffusion ocurring during drift)...

for current integration mode!

'dc' measured position of beam: time scan at ID21 Cr-Au contacted quadrant, Oct 2005

standard deviation 12.3nm calculated for 100 successive data points (1sec V/F integrations at 1.2 sec intervals, linear drift term only subtracted).

Contribution from electrometer + V/F noise is ~1.1nm (inferred from observed, beam-off V/F count noise during shutter closed period).

Diamond signal time response 'single bunch'

Signal response to crossing of one X-ray bunch

= absorption of ~400 photons at 7.2keV (~3MeV)

Linear fit to slope gives signal full base width 2.46ns, --> e- drift velocity ~41µm/ns

Comparison of RF and 'dc' electrometer position response

Beam pulse every ~730ns (1.37MHz), HP8591 **signal analyzer at 352MHz** with ~1kHz BW: measuring pulse signal power in *8th harmonic.*

Glasgow contacted device: X-ray response maps 3.5mm

Glasgow Ni-TiC contacted device: X-ray response uniformity

Thinned electrode central area Φ0.8mm 5nm Ni / 5nm Au

response is 'flat' with 0.18% std. dev.

calculated for un-normalized data, 15 x 15 points at 12.5 μ m² beam probe at 7.2keV

μm

above map, data normalized to transmitted beam intensity (to remove 'top-bottom' synchrotron beam decay artifact)

Glasgow contacted device (333µm thick, sample E6-MDS4)

I-V curve *in X-ray beam* (ID21, pinhole beam Ø100 μ m, ~10⁸ph/sec at 7.2keV). leakage current is ~pA level for +/-150V bias.

Si calibration $\rightarrow \epsilon_{D} = 15.1 \text{eV} / \text{e-h pair}$

Ο

Surface damage and contact edge hot defects

Beam XBIC tests DC and RF at ID21 (20/21 July 06)

Ni/Pt/Au and Ti(annealed)/Pt/Au contacts, fabricated at Stanford NanoFab' Facility

50, 20, 10 and $5\mu m$ quadrant isolation gaps

E6 MDS2 & MDS3 samples, Achard-CNRS ATJ30 sample

Lift-off lithography

Ni/Pt/Au on ATJ30 scaife and MDS2 &3 resin wheel polished samples (July 2006)

the good...

...the bad...

...and the ugly

Sample mounting ID21 MDS-2, 3 and ATJ30 samples (July 06)

In situ on ID21 X-ray microscope

E6 Sample MDS-2, I-V curves X-ray beam on

Ni-TiC contacts, *poor quality* Sample thickness ~350µm

E6 Sample MDS-3, I-V curves X-ray beam on

Ni-TiC contacts, *poor quality* Sample thickness ~350µm

Pulse response MDS3 samples (July 06)

DBA3 +1GHz BW 8Gs/s Lecroy 584 scope

beam on quadrant 19,

(X-ray pulse duration 50~100ps, not measured)

Intervals between ESRF Synchrotron Pulses

Lecroy scope data post-analyzed with leading edge 'discrimination', level normalized Individually to pulse integral ($\sigma \rightarrow 20$ ps for simple leading edge discrimination).

Test designs for Glasgow-ESRF mask

Quadrant

Strips

Contact impedance test (cf. Dynex Semicon')

Quadrant and double segmented rings

RF phase signal readout (Naylor)

3mm-side motifs, positive/negative mask sets in processing at Glasgow University (Sept 2006)

Conclusions:

AFM and interferometric profiling very useful and *accessible* tools, but give no information on subsurface damage

X-ray beam tests (topo', XBIC...) give much information but *limited access*

Solutions for good device fabrication demonstrated, but we still need availability of state of art diamond surface finishing technologies reliable/routine precision lithography and contact processing on (thinned) CVD plates

initial tests, diamond X-ray beam monitors work well -no physics 'show stopper' problems encountered
but high intensity, long-term radiation & aging tests not yet done...