Electronic Systems for the CBM Experiment at FAIR

Developments at GSI

Holger Flemming, EE

Overview

- DLL Testchip, Designed by Harald Deppe
 - Results of DLL Testchip
- First TAC Testchip in 180 nm CMOS technology
 - Time to Amplitude Converter
 - Chip Design
 - Simulation
 - Layout
 - Test
- Next Steps
- Conclusion

DLL based TDC Core for Time of Flight Measurements

Main Results of DLL Testchip

- Power consumption:
 - VDDIO: 5,5 mA @ 3,3 V \Rightarrow 18,5 mW
 - VDDA: 6,5 mA @ 1,8 V ⇒ 11,7 mW
 - VDDD: 1,5 mA @ 1,8 V ⇒ 2,7 mW
- Clock jitter at LastDummyOut:
 6,8 ps rms
- Lock range: 65 to 95 MHz
- Time resolution:
 31,8 ps ± 0,17 ps
- DNL: + 0,37 / 0,81 LSB
- INL: + 0,66 / 1,07 LSB

Next Step for DLL Evaluation

TDC Core with a Time to Ampiltude Converter (TAC)

Benefits

- Time resolution not limited by delay of a digital element
- Time resolution below 10 ps possible
- Zero power consumption in standby

mode

Drawbacks

- Calibration necessary
- Deadtime during ramping and readout

- Digital delay chain
- Distributed RC-Network
- Voltage on C_{out} increases linear with time

First GSI TAC Implementation

TAC based TDC already successfully implemented

- TAC-ASIC by GSI and FhG IMS in 0.8µm CMOS
- Used in FOPI RPC Readout
- Time resolution better than 10 ps

First TAC Testchip in 180 nm

- 2 TAC TDC Cores
- SC attenuator to avoid rail to rail signals
- Common clock and analog output
- LVDS inputs •
- Some more teststructures

Simulation of First Testchip

Time to Amplitude Characteristics

Layout of Testchip

Holger Flemming, GSI, EE 3rd NoRDHia Workshop 139 µm

Layout of Testchip

380 µm

SC Attenuator

Layout of Testchip

3rd NoRDHia Workshop

Status of Chip Tests

Next Steps

- Measurement of Chip Performance
 - Time Resolution
 - Nonlinearity
 - Crosstalk
 - Sensitivity on Noise from digital Logic (Substrate Coupling)

Concept for Complete TAC based TDC

- Time over Threshold measurement for signal amplitude determination
- Integrating TAC and ADC for converting time to digital
- Timestampunit for Eventmarking
- Integrated Interface to DAQ

Conclusion

- GSI EE Department is strongly involved in high resolution time measurement for CBM
- Two concepts under evaluation
- First results of DLL are very promising
- First results of TAC expected soon