Diamond detectors for charged-particle beams

(Online dosimetry)

Monika Rębisz and Bernd Voss

GSI detector laboratory

- Aims & Requirements
- Experiments & Set-ups
- Results
- Summary & Outlook

Particle cancer therapy

Scanning System

Beam profile- & Dose-verification
 & Biological studies:

→ Stopped Beam
→ Bragg-Peak region

 → mixed field irradiation (projectile fragments, 10. 20% dose)
 ⇒ UNILAC (biology, clean conditions)

medium volume unless not a phantom required

<u>Offline</u>: radiographic films, CR39, TLD (pCVD), PET

Online: CG+IC pin-point ionization chambers scintillation screens 1) Online <u>Beam preparation</u>

2) Online <u>Treatment steering</u>

- \rightarrow Passing Beam
- → Bragg plateau
- → 'always in', no change in beam quality !

large area 250 x 250 mm²

Intensity(t) sampling every 10µs Parallel-plate ionization chambers

Position(x,y) sampling every 100µs Multi-Wire proportional chamber

time-consuming daily calibration and constancy checks

Aim & Requirements

'In the end it's all particle numbers at a certain position'

→ Measure intensity & structure (x,y,t) of the extracted beam by counting individual particles close to the GHz/channel-range with 100 % detection efficiency

Requirements for the detection system:

- high-speed (ns)
- high accuracy of counting (1%)
- high detection efficiency (100%, also with moderate collection efficiency)
- good S/N ratio (threshold)
- + 'small' signals
- + reasonable sizes

\rightarrow scCVD

Parameters

	SIS		UNILAC		
Energy	80 - 430 MeV/u 'High'	¹² C (p, He, C, O) Therapy	11,4 MeV/u 'Low'	¹² C ⁴⁰ Ar ⁴⁸ Ca ⁵⁴ Cr ¹⁵² Sm	10.2 MeV/u 7.1 MeV/u 8.3 MeV/u 7.6 MeV/u 5.8 MeV/u
Beam size	Pencil beam 4 -10 mm (fwhm) 200 x 200 mm ²	Scanning beam	Fixed field 45 mm Ø	208P 238U	3.65 MeV/u 4,2 MeV/u
Operation	Transmission mode (Plateau)		Stopping mode (Bragg-Peak)		
Intensity	10 ⁶ - 10 ⁸ (10 ¹⁰) ions/second 10 ⁴ - 10 ⁸ ions/cm ²		10 ⁴ -10 ⁵ ions/second/mm ² (in average)		
Time Structure	'slow extraction', duty cycle 0.5, bunch length 2s, dynamic range 10 (no zeroes)		Micro- (µs) & Macro-(ms) Pulses		
Charge gen.	n x 10 fC		n x 100 fC		
DBA (discrete)	unipolar				
NINO (ASIC)	bipolar				

Field of 9 cm² 256 irradiation points

Focus ↓ (7) Ø 2,2 ← Energy (253)

Ø 2,2 – 8,8 mm

Low-energy set-up

Field size 16 cm²

Requirement

Homogeneous beam intensity (x,y) = const

'Online' Beam delivery control

Parallel-plate ionization chamber
 → Saturation / Recombination

'Offline' Calibration

Nuclear track detector (CR39)

- → 'dirty', time consuming, precision & reproducibility (5..20%)
- probing the fluence with an active detector at several points or with high pixeling

Material

Samples: Free standing films of NCD, pCVD, scCVD <100> oriented Size: 10x10, 20x20, 4x4 x 0.1–0.5 mm³

DETECTOR FABRICATION:

surface cleaning and oxidation $H_2SO_4 + KNO_3$ (boiling), DI water

VARIOUS CONTACTS:

sputtered circular / strip / pixel electrodes (parallel plate geometry) contact area: 0,2 – 16 mm² annealing at 600°C

carbide former:

Cr (50nm) + Au (100nm) Ti (20nm) + Pt (30nm) + Au (100nm)

non carbide former: Pd (100nm), Al (100nm)

Detector operation

I-V characteristics

Electronics (1)

- DBA Diamond Broad-Band Amplifier designed specially for diamond at GSI, commercially available
- Various types: DBA-II -III -IV
- Band width 2.3 2.1 GHz
- Low noise, remote controlled gain (DBA-III, -IV)
- Analog output signal
- Pulse-area proportional to the charge
- \gg \odot Quite good for heavy ion (high signal) beam monitoring
- \gg \odot Only single channel read-out
- \gg \otimes Unipolar, pick-up noise relatively high (in our applications)

Electronics (2)

- NINO ASIC designed for ToF ALICE modifications on implementation by GSI
- 16 channels per card
- Digital output signal
- Width of the pulse proportional to the charge

Electronic Pulse characteristics

UNILAC ⁴⁸Ca 8,3 MeV/u 16-pixel detector pCVD 150µm unipolar read-out, single shots

DBA-IV

NINO

Pulse with $\sim Q_c$

Electronic Pulse characteristics

SIS12C253 MeV/u16-pixel detectorpCVD150μmunipolar read-out,single shots

DBA-III

NINO

→ High pick-up noise with DBA better for NINO (even with unipolar input)

Electronic Pulse characteristics

UNILAC	¹³² Xe 4,2 MeV/u	UNILAC	¹² C	10 MeV/u
Augsburg	ʻ <mark>scʻCVD</mark> 341µm	E6	scCVD	483µm

→ kind of 'bad' scCVD but better than pCVD DBA-III

DBA-II

 \rightarrow nice pulse shape for counting applications

→ inappropriate pulse shapes (too long)
 → much thinner detectors needed

Problems: pickup noise noise separation time structure (micro/macro-pulse) Counting efficiency 100 ± 7 % no polarization observed (but present with other detectors & ions)

→ Missing counting efficiency due to detector & electronics Improvement of counting efficiency 100 ± 7 %

Summary & Outlook

- Various CVD diamond detectors tested
- Various ion species & energies used
- Fast single- & multi-channel electronics tested

(100 ± 7)% counting efficiency achieved

• Best choice: scCVD, \leq 100 µm thick, large area

Problems:	Solution / Task:
Double hits & time structure (UNILAC) Mixed field irradiations	→ smaller pixels, analog signal → faster FEE (QDC, scalers)
Active area (200 x 200 mm ²)	 → bigger detector size (patchwork, n x 10²) → large amount of pixels (n x 10⁴) → dense electronic 'on-board'
Detector quality	 → diamond (pulse shape) → contacts (stability, polarization → doping?)
Electronics noise limits accuracy	→ work on DBA → multi channel ASIC with analog output

Thank You!