
  

IBIC imaging in synthetic single crystal diamond
A. Lohstroh, P. J. Sellin, S. G. Wang, A. W. Davies, and J. Parkin 

• IBIC at the Surrey microbeam

• Introduction to sample geometry

• CCE images – variations in hole sensitive 
            transport due to priming, polarisation
                      and event rate…. 
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• Time resolved signals and
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The Surrey microbeam

• 2 MV Tandetron
  i.e. up to 3 MeV H+ 
                 6 MeV He2+ 
• Beam spot size < 4 µm x 4 µm
• Scan size up to 2.5 mm x 2.5 mm
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Variable sample temperature between 100 K and 300 K.



  

IBIC at the Surrey microbeam
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• Conventional pulse height spectra are acquired pixel by pixel
   on an event by event bases and analysed offline (Omdaq).
• The minimum sampling interval of the digitiser is 2 ns.
• Typically, 200 samples per pulse are acquired (with a few
  hundred  pulses processed per second).
• Typical beam currents are < 0.5 fA (~1000 events/sec), set-
  up with a Silicon detector (unfortunately not perfectly stable).
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IBIC analysis of 2 samples grown by Element Six 
using a CVD process based on that described by 
Isberg et al.: 

 D1 - vertically cut sample containing dislocations 
and Nitrogen  doped layers supplied directly by 
Element Six for comparative analysis
 
 D2 - High purity detector sample, made available 
courtesy of John Morse (ESRF) 

Origin of the single crystals



  

D1 – vertically cut
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Blue band A luminescence,
associated with dislocations

2.5 mm

Sample D1: 
 Thickness = 0.49 mm 
 evaporated Ti/Au 
  (50 nm/300 nm)
  Contacts annealed at 400 oC



  

Pad
(Ni/Au)

Pad (Ni/Pd/Au) 
Guard ring – floating 

D2 – asymmetric contacts
Sample D2: 
 Thickness = 0.35 mm 
 Ni/Pd/Au on the front pad  
   and guard ring – centre hole 
   Ni/Au
 Ti/Pd/Au (annealed) contact 
   on the back
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IV is not perfectly
symmetric in both cases.

Discrepancy with the scan 
direction could be due to not fully 
reached stabilisation.



  

Charge collection efficiency (CCE)in D1 

Blue band A luminescence,
associated with dislocations
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Electrons and holes are 
affected 
 strongly by the nitrogen
 weakly by dislocations

Polarisation/ priming has
been observed, especially in 
hole sensitive transport.
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Sample D1: CCE

 

CCE above 90 % for field strength 
< 2500 Vcm-1
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growth direction of the crystal. 



  

Polarisation and Priming in D1
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image reduce and 
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 CCE in sample D2: electron transport

MSD4: IBIC 15/16 February 2006
cathode irradiation with 2.5825 MeV H+
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Saturation of CCE at higher value and lower field strength compared to D1:



  

CCE in sample D2: hole transport

 Very high and narrow peak at +50 V, with very small signs of 
signal 
  decrease over time.
 The CCE image at low electric field strength seems related to the 
   contact structure.
 At bias voltages below +45 V, the beam current was unstable and 
  the data acquired during these measurements seems not 
  reproducible due to a dose rate dependence of detector response.
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 Example of varying hole response of D2 at low field

The spectra seem to be 
able to recover within 
short  periods of time 
(few minutes).

Highest CCE events 
are found at high count 
rate, after a long 
“break” of irradiation 
(very low event rate).

Maximum CCE in the 
corners – geometric 
effect?
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Digital IBIC in D1 

+30 V, 296 K  No rise time variation was found 
  for electron sensitive pulses and 
  in sample D2, where the transit 
  time/lifetime  is expected to be  
  shorter or similar than the 
  system resolution:

There is not a direct correlation 
  between rise time and CCE. 

Effect of the dislocation lines on 
 the pulse shapes could not be 
 confirmed.
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Separation of detrapping and priming effects 
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The de-trapping effect is temperature, but 
only weakly voltage dependent (is boron 
introduced from the substrate ?) 
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The rise time 
changes with bias 
voltage and not with 
temperature, e.g. 
not affected by de-
trapping of carriers,
confirming spatial 
variation of field 
strength.



  

Activation energy of the shallow trap in D1
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If multiple trapping and de-
trapping can be neglected, 
then

Similar level identified in 
nominally undoped and B - 
doped, single and polycrystalline 
diamond with EA values  
between 0.29 eV and 0.4 eV.
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Conclusion & Summary

• Degradation of electron and hole transport is correlated to the
  observed nitrogen and band A luminescence signals (recombination
  centre ?) in D1.

• A shallow trap level, possibly boron related, was found close to the
  HTHP substrate interface of the sample. 

• The vertically cut sample D1 with symmetric contacts showed stronger 
   influence of polarisation and priming on hole transport than on 
   electrons over “long” timescales. The effect seems to follow the growth 
   direction of the material.

• In contrast, D2 shows hardly any polarisation or priming, but an event 
  rate dependence of the signal at low bias voltages (may be possible for 
  electrons and  D1 too?). The CCE image seems correlated to the
  contact geometry of the sample.
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