Characterization of SC CVD diamond detectors for heavy ions spectroscopy and MIPs timing

Michal Pomorski and GSI group*

*E.Berdermann, M. Ciobanu, W. Hartmann, B. Lommel, A. Martemiyanov, P. Moritz, M. Rebisz, B. Voss.

SC CVD diamonds → producer e6

SC-E6-4 \rightarrow 3.5 x 3.5 x 0.48 mm³; Cr(50 nm) Au (100 nm) BDS-5 \rightarrow 5 x 5 x 0.325 mm³; Cr(50 nm) Au (100 nm) BDS 7 \rightarrow 5 x 5 x 0.318 mm³; Cr(50 nm) Au (100 nm) BDS 9 \rightarrow 5 x 5 x 0.32 mm³; Al(100nm) guard ring BDS 10 \rightarrow 5 x 5 x 0.3 mm³; Al(100nm) guard ring BDS 14 \rightarrow 5 x 5 x 0.49 mm³; Al(100nm) guard ring

Cleaning and oxidation before metallisation:

If metallised before \rightarrow Aqua Regia

 $H_2SO_4 + KNO_3$ boiling ~30 min \rightarrow rinse with ultra-pure water ultrasonic bath \rightarrow dry with N_2

Metallisation sputtering or evaporation at Target Laboratory of GSI \rightarrow Bettina Lommel talk Cr(50nm)Au(100nm) ; Ti(30nm)Pt(50nm)Au(100nm); Al(100 nm) \rightarrow annealing 500C for 10min Ar

- Current-Voltage characteristics and surfaces influence
- Charge collection properties and stability
- Energy resolution
- Timing properties
- Summary

CURRENT-VOLTAGE CHARACTERISTICS

0

GSI

Nevel Radiation Hard

CURRENT-VOLTAGE CHARACTERISTICS

AFM pictures of both diamond (BDS14) surfaces

BDS14_12o.bmp profile

16

14 12 [wu] N 8

3000

substrate side (?)

0

GSI

roughness rms≅5.6 [nm]

growth side (?)

roughness rms≅1.4 [nm]

Michal Pomorski IInd Norhdia workshop at GSI, 31 August, 2005 Darmstadt

4000

path lenght [nm]

5000

CURRENT-VOLTAGE CHARACTERISTICS

Asymmetry in I-V characteristic is present due to surface damage (polishing?) ... scratches "pop up" after samples annealing...

GSI

GSI

Long term stability

CHARGE COLLECTION

- Use of an $\alpha\text{-source}\ ^{241}Am$ (5.486 MeV) for charge injection
- α -particle range in diamond $\rightarrow \sim 12 \mu m$
- detector thickness >320µm, induced charge → mainly motion of one type of carriers
- Choosing the HV +/- \rightarrow drift of holes or electrons
- presented geometry +HV holes drift,
 -HV electrons drift
- detector coupled to classical spectroscopy front-end electronic

300

5.0

counts

ENERGY RESOLUTION

 4.0×10^{4}

Diamond resolution close to silicon detectors:

FWHM = 17 keV (5.486 MeV) (sc-e6-4 holes) measured with not dedicated CS electronics

silicon \rightarrow e~3.6 eV/e-h; diamond \rightarrow e~12.8 eV/e-h We are close to statistical limits (Fano factor?)

TIMING PROPERTIES

Time of Flight Technique

Low impedance of 50 Ω voltage amplifier DBA – II, bandwidth 2.3 GHz (3dB), gain 44dB

Digital Scope bandwidth **3GHz**, 20GS/s

TIMING PROPERTIES

Pulse Height [V]

electron drift signals

Assuming uniform internal electric field (flat top of BB signals) and CCE=100%

$$v_{dr}(E) = \frac{d}{t_{tr}}$$

d – detector thickness

 t_{tr} – transition time \rightarrow FWHM of BB signals

error \rightarrow standard deviation of signals at FWHM

Current voltage characteristics

- huge difference in leakage current for various samples
- no difference for guarded samples \rightarrow mainly bulk leakage
- Asymmetry in I-V probably due to damaged surface as a result of samples polishing \rightarrow requires overgrowth after polishing
- No difference for various metallisation \rightarrow proposal to use light elements e.g. Al

FG SG T

charge collection, stability, and ΔE

- \bullet CCE \sim 100% at low E < 0.3V/µ for holes and electrons most of tested samples
- all samples → "spectroscopic grade" some of them resolution close to silicon detectors
- perfect behavior for holes drift no trapping (or negligible)
- most of them stable as well for electrons drift

Timing properties

- flat top of BB signals for all tested samples – uniform internal electric field – no internal space charge

-common behavior -->

holes drift velocity > electrons drift velocity in <100>

- intrinsic limit for timing application with CSA electronic

drift of electrons 1ns / 100 μ m (optimistic E=2.8V/ μ m)

uniform rise time of ~160 ps (limited by electronics) jitter 26 ps for BB electronic