Characterization of SC CVD diamond detectors for heavy ions spectroscopy and MIPs timing

Michal Pomorski and GSI group*

*E. Berdermann, M. Ciobanu, W. Hartmann, B. Lommel, A. Martemiyanov, P. Moritz, M. Rebisz, B. Voss.
ABOUT SAMPLES

SC CVD diamonds → producer e6

SC-E6-4 → 3.5 x 3.5 x 0.48 mm³; Cr(50 nm) Au (100 nm)
BDS-5 → 5 x 5 x 0.325 mm³; Cr(50 nm) Au (100 nm)
BDS 7 → 5 x 5 x 0.318 mm³; Cr(50 nm) Au (100 nm)
BDS 9 → 5 x 5 x 0.32 mm³; Al(100 nm) guard ring
BDS 10 → 5 x 5 x 0.3 mm³; Al(100 nm) guard ring
BDS 14 → 5 x 5 x 0.49 mm³; Al(100 nm) guard ring

Cleaning and oxidation before metallisation:
If metallised before → Aqua Regia
H₂SO₄ + KNO₃ boiling ~30 min → rinse with ultra-pure water ultrasonic bath → dry with N₂

Metallisation sputtering or evaporation at Target Laboratory of GSI → Bettina Lommel talk
Cr(50 nm) Au(100 nm) ; Ti(30 nm) Pt(50 nm) Au(100 nm); Al(100 nm) → annealing 500°C for 10 min
Ar
• Current-Voltage characteristics and surfaces influence
• Charge collection properties and stability
• Energy resolution
• Timing properties
• Summary
CURRENT-VOLTAGE CHARACTERISTICS

 bulk + surface current

 screened box, no light + N₂ flow

 „Zoo“ of I-V characteristics

 - not reproducible I-V for various samples
 - asymmetry

 Michal Pomorski at Norhdia workshop at GSI, 31 August, 2005 Darmstadt
CURRENT-VOLTAGE CHARACTERISTICS

bulk current

screened box, no light + N\textsubscript{2} flow

top electrode

guarded electrode

ring electrode

guard

6517
V-source

6517
Picoammeter

no difference in I-V for:

- various metallisation (Al, Cr, Ti)
 (2 samples tested)

- guarded electrode \rightarrow
 mainly bulk leakage current
 (3 samples tested)

no difference in I-V for:

- various metallisation (Al, Cr, Ti)
 (2 samples tested)

- guarded electrode \rightarrow
 mainly bulk leakage current
 (3 samples tested)

Michal Pomorski IInd Norhdia workshop at GSI, 31 August, 2005 Darmstadt
AFM pictures of both diamond (BDS14) surfaces

substrate side (?)

roughness
rms ≈ 5.6 [nm]

growth side (?)

roughness
rms ≈ 1.4 [nm]
Asymmetry in I-V characteristic is present due to surface damage (polishing?) ... scratches „pop up” after samples annealing...

Annealed in 600°C, 30 min

\[I_a \gg I_b \]

CURRENT-VOLTAGE CHARACTERISTICS

- Damaged surface
- Substrate side (unknown)
- Leakage current
- Growth side (unknown)
Long term stability

SC-E6-4
Cr;Au

Dark current [A]

Bias [V]

Michal Pomorski IInd Norhdia workshop at GSI, 31 August, 2005 Darmstadt
- Use of an \(\alpha \)-source \(^{241}\text{Am} \) (5.486 MeV) for charge injection

- \(\alpha \)-particle range in diamond \(\sim 12 \mu \text{m} \)

- detector thickness \(> 320 \mu \text{m} \), induced charge \(\rightarrow \) mainly motion of one type of carriers

- Choosing the HV +/- \(\rightarrow \) drift of holes or electrons

- presented geometry \(+HV \) – holes drift, \(-HV \) - electrons drift

- detector coupled to classical spectroscopy front-end electronic
Saturation to ~ 68.6 [fC] for both electrons and holes drift.

CCE=100% at low electric field < 0.3 V/mm

68.6 [fC] \rightarrow 429 372 e-h

Average energy for e-h pair creation \rightarrow 12.8 eV/e-h
DETECTION STABILITY

Time of spectrum collecting > 12h

SC\textsubscript{6}E6-4

BDS 9

BDS 14

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure.png}
\end{figure}
DETECTION STABILITY

BDS 10

Indication of presence for electrons:
- regions with 100% efficiency → main peak
- region with lower efficiency 93%, quite uniform density of trapping centres → shifted peak

BDS 10 E~0.8 V/µm
5000 events

release of previously trapped electrons
Diamond resolution close to silicon detectors:

FWHM = 17 keV (5.486 MeV) (sc-e6-4 holes) measured with not dedicated CS electronics

silicon \rightarrow e\sim3.6 eV/e-h; diamond \rightarrowe\sim12.8 eV/e-h

We are close to statistical limits (Fano factor?)

![Energy Resolution Diagram](image)
Time of Flight Technique

Low impedance of 50 Ω voltage amplifier
DBA – II, bandwidth 2.3 GHz (3dB), gain 44dB

Digital Scope
bandwidth 3GHz, 20GS/s
TIMING PROPERTIES

Average signals from 500 single shots

BDS9 holes drift

E = 1.23 V/µm

E = 0.03 V/µm

output signal [V] vs. time [s]

0.10
0.05
0.00
-0.05
-0.10

0.0
1.0 x 10^6
2.0 x 10^6
3.0 x 10^6

electronics oscillation 2GHz due to 50ohm mismatching

BDS10 holes drift

E = 1.25 V/µm

output signal [V] vs. time [s]

0.00
0.05
0.10
0.0
1.0 x 10^6
2.0 x 10^6
3.0 x 10^6

SCB4 sample thick. = 393 µm holes drift

BDS9 electrons drift

E = 1.23 V/µm

output signal [V] vs. time [s]

0.12
0.08
0.04
0.00

0.0
1.0 x 10^6
2.0 x 10^6

SCB4 electrons drift sample thickness 393 µm

BDS10 electrons drift

E = 1.25 V/µm

output signal [V] vs. time [s]

0.12
0.08
0.04
0.00

0.0
1.0 x 10^6
2.0 x 10^6

Michal Pomorski Iind Norhdia workshop at GSI, 31 August, 2005 Darmstadt
Assuming uniform internal electric field (flat top of BB signals) and CCE=100%

\[v_{dr}(E) = \frac{d}{t_{tr}} \]

d – detector thickness
\(t_{tr} \) – transition time \(\rightarrow \) FWHM of BB signals

error \(\rightarrow \) standard deviation of signals at FWHM
Drift velocities for electrons and holes
TIMING PROPERTIES

$$V_{dr} = \frac{\mu_0 \cdot E}{1 + \left(\frac{v_{sat} \cdot E}{\mu_0}\right)^\beta}$$

holes

$$\beta \approx 1$$

electrons

$$V_{dr} = \frac{\mu_0 \cdot E}{1 + \frac{v_{sat} \cdot E}{\mu}}$$

2 fits:

0.3 – 1 V/μm → μ_0

1 – 3 V/μm → v_{sat}

Holes

$\mu_0 \approx 2332$ [cm2/Vs]

$V_{sat} \approx 140$ [μm/ns]

electrons

$\mu_0 \approx 1400 - 3100$[cm2/Vs]

$V_{sat} \approx 190$ [μm/ns]
Current voltage characteristics

• huge difference in leakage current for various samples

• no difference for guarded samples → mainly bulk leakage

• Asymmetry in I-V probably due to damaged surface as a result of samples polishing → requires overgrowth after polishing

• No difference for various metallisation → proposal to use light elements e.g. Al
charge collection, stability, and \(\Delta E \)

- CCE \(\sim 100\% \) at low \(E < 0.3\, \text{V}/\mu \) for holes and electrons – most of tested samples
- all samples \(\rightarrow \) “spectroscopic grade” some of them resolution close to silicon detectors
- perfect behavior for holes drift – no trapping (or negligible)
- most of them stable as well for electrons drift
Timing properties

- flat top of BB signals for all tested samples – uniform internal electric field – no internal space charge
- common behavior -->
 holes drift velocity > electrons drift velocity in <100>
- intrinsic limit for timing application with CSA electronic drift of electrons 1ns / 100 µm (optimistic E=2.8V/µm)
- uniform rise time of ~160 ps (limited by electronics) jitter - 26 ps for BB electronic