

Time Stamping for Diamond

Peter Fischer, Michael Ritzert

Lehrstuhl für Schaltungstechnik und Simulation Institut für Technische Informatik Universität Mannheim

Presentation given at the NoRHDia Workshop, 1.9.2005, GSI, Darmstadt

Talk Outline

- Overview of common circuit concepts for time stamping
- Design issues
- Recent results with a ring oscillator test chip
- Summary and next steps

Overview of Circuit Concepts

...and mixtures of these concepts

Fast Counter

- Counter must use Gray coding or similar to avoid scrambled bits when latches jitter
- + very simple concept
- + stable and predictable bins
- + low power
- may reach some GHz in 0.18µm, i.e. bin widths of some ~200ps
- Improvement with staggering of several counters possible

Ring Oscillator: Principle

- Principle:
 - a ring oscillator generates thermometer code time stamps. Needs overall inversion!
 - a ('slow') coarse counter generates the MSBs
 - input signal is used to latch values
 - Ring oscillator can be locked to a reference clock with a PLL
- + fairly simple, 'digital' design
- + infinite dynamic range
- + no calibration required (with PLL), guaranteed stability
- limited bin size (but several times better than with counter)

Ring Oscillator: Design variations

- Resolution can be increased by:
 - using multiple channels with delayed stop signals
 - running several phase coupled ring oscillators
 - using slow / fast buffers between ring oscillator and latches
- Use 'single ended' CMOS logic (see Harald Deppe, GSI)
 - simple
 - issues: supply sensitivity, ring oscillator frequency range, linearity (inversion!)
- Use differential logic
 - uncommon
 - more complex, if everything is done differentially
 - trimming simpler

Pulse Shrinking

- Principle:
 - Pulse is circulated in an (ideal) delay line.
 - One pulse shrinking element makes pulse shorter by constant ϵ with every 'turn'
 - Width is determined by counting 'turns' until pulse vanishes. W = N x ε
- Delay line must be longer than max. pulse width W_{max}
- + Very low power
- Conversion time is long and linked to resolution: T = W_{max} x W_{max} / ϵ
- Difficult calibration
- Sensitive to matching and noise (?)

TAC + ADC

- Principle:
 - generate a linear voltage ramp during the strobe signal
 - convert the voltage to a digital value with an ADC
- Ramp can be generated with
 - constant current charging of a capacitor
 - an 'interpolating DAC' (see H. Flemming, GSI)
- + very high resolution
- needs ADC
- extra circuitry needed to generate MSBs
- Issues are calibration and stability

Peter Fischer, Uni Mannheim, Page 8

Differential Logic

- Current I_{bias} is steered to left or right load circuit with a differential pair
- The load circuit converts to current step to a voltage step
- ideal' load circuit:
 - The V_{hi} -level is fixed by the maximum possible input voltage to the switch block (~VDD- V_{TP} - V_{DSat})
 - The V_{Io}-level is fixed by the voltage swing required to 'fully' switch current in the switch block. For MOS operated in weak inversion, this is below 200mV!
 - The plateau at $\frac{1}{2}$ I_{bias} guarantees equal rise and fall times (C_{load} is charged/discharged with $\pm \frac{1}{2}$ I_{bias})
- If V_{hi} and V_{lo} are independent of I_{bias}, the speed of the gate can be varied significantly with I_{bias}

Design Issues

- Design goals are
 - minimal bin width = max. resolution (aim at σ = 50ps)
 - linearity
 - dynamic range
 - low dead time = high double hit rate (aim at 10 MHz)
 - low power (not so critical in Diamond: few channels, cooling possible, preamps and discriminators will be 'high' power components)
 - easy calibration
 - stable operation (with temperature, power supply etc.)
 - multi-chip operation (maybe not required for diamond)
- Watch
 - matching between devices: better for larger devices, but that costs power and/or speed
 - radiation hardness
 - technology scaling (this favors 'digital' designs)

AMS 0.35µm Test Chip 'TC3'

- Block diagram shows only relevant parts
- Note that the differential inputs have an additional (analog) discriminator

Test Setup

We have developed a very compact USB based test setup.

Measurements: Ring Oscillator Speed

- 16 stage Ring oscillator speed can be measured on a scaled down digital output
- Speed can be tuned in a wide range as a function of bias current (per stage)
- Standard operation point: 150 ps / bin

Hit bins for two different delays

- Inject in the two channels with a constant (cable) delay
- VCO speed: **150ps / bin** $\Rightarrow \sigma_{ideal} = 43.3 \text{ ps}$
- Plot time difference (here in bins) for two delays (red)
- Also plot fine grain result using (uncalibrated) 'slow' buffers (green)
- Note that measured **coincidence sigma =** $\sqrt{2}$ **x single channel sigma**

Bin occupancies (i.e. relative bin width)

- Generate hits at random moments. Display counts for both channels
 - Equal time bin widths would give homogeneous bin occupancy
 - Shorter bins have lower occupancy

- This measurement can be used to **correct for bin size**
- Note: variations are from transistor mismatch and stable in time a chip 'fingerprint'

Bin width correction

- Use bin width information (fast / slow / mixed) for correction
- Maybe this result can still be optimized by adjusting the delay of the slow buffer...

Note that any non-linearities are included in this measurement!

Next Test Chip: UMC 0.18µm (GSI Submission)

- 16 stages
- 2 groups of latches
- VCO with or without delay trim
- VCO: 260 x 30 µm²
- Trim: 260 x 120 μm²

Summary and outlook

- We pursue a ring oscillator approach using differential logic
- Single channel resolution $\sigma \sim 35 \text{ps}$ already reached in 0.35µm technology
- This fits well to the goal of 50ps (note: RPCs have 80ps time resolution)
- Advantages of the ring oscillator are:
 - stability (if locked to reference frequency with a PLL)
 - 'infinite' dynamic range (with wide 'coarse' counter)
 - very small dead time
 - fair power consumption (<15mA @ 2V per channel + VCO...)
- Expect factor ~2 improvement in 0.18μm, i.e. σ ~ 25ps (test chip has only fast bins).
- Next steps:
 - Test UMC chip (we will get it in 1 week!)
 - Increase speed, linearity, resolution work is in progress

