

Characterization of diamond using broad-band electronics

(H. Pernegger, CERN)

Overview

- ♦ The principle & Setup
- Raw Measurements & Analysis
- Measurement of drift velocity
- Charge lifetime
- Net effective space charge

- Heasure the induced current signal WHILE ionization charges drift through the detector bulk material
- Record the pulse shape of induced current on the electrodes to get information on

Drift velocity (and mobility)

Charge lifetime

Internal electric field

Brift process takes only few nano-seconds and therefore requires us to us fast current amplifiers

The principle

- **H** Use α -source (Am 241) to inject charge
- # measure charge carrier properties of electrons and holes separately
- Injection
 - Depth about 14mm compared to 470mm sample thickness
 - Use positive or negative drift voltage to measure material parameters for electrons or holes separately
 - Amplify ionization current

The readout

- How the second secon
 - + Bandwidth 2 GHz
 - Amplification 11.5
 - Rise time 350ps
- 🔀 Inputimpedance 45 Ohm
- Readout with LeCroy 564A scope (1GHz 4Gsps)
- % Correct in analysis for detector capacitance (integrating effect)
- Cross calibrated with Sintef 1mm silicon diode

• $\mu_e = 1520 \text{ cm}2/\text{Vs}$ • I = 3.77 eV +/- 15%

$$i_m(t) = \frac{1}{R_{in}A} \left(R_{in}C_d \frac{dU(t)}{dt} + U(t) \right)$$

The measured current curves

The parameters

Extracted parameters

$$Q_{c_h}(V) = \int_{t_s}^{t_e} i_{m_h}(V, t) e^{+\frac{t}{\tau_h}} dt$$

Measurement of velocity

Average drift velocity for electrons and holes

$$v_{dr_{e,h}}(E) = d/t_c$$

Extract μU and saturation velocity

$$\begin{split} v_{dr} &= \frac{\mu_0 E}{1 + \frac{\mu_0 E}{v_s}} \\ & \& \text{ Liectrons: 1714 cm2/Vs} \\ & & & \text{Holes: 2064 cm2/Vs} \\ & & & \text{Saturation velocity:} \\ & & & & \text{Electrons: 0.96 10^7 cm/s} \\ & & & & \text{Holes: 1.41 10^7 cm/s} \end{split}$$

... and "effective mobility"

Beduce a calculated mobility from the measured velocity (normaly mobility is defined only at low fields with linear relation between field and velocity)

Carrier lifetime measurement

Extract carrier lifetimes from measurement of total charge

Lifetime measurement by charge correction

Correct the measured charge

$$Q_{c_h}(V) = \int_{t_s}^{t_e} i_{m_h}(V, t) e^{+\frac{t}{\tau_h}} dt$$

Extract the lifetime

For the correct choice of the correction time, slope becomes zero

🔀 Both measurements yield

identical lifetime

🔀 The charge lifetime is

detector operation

Charge trapping doesn't

seems to be a limiting

issue for scCVD

voltes)

much larger than the

transit time (at typical

Electrons and holes of

between 35 to 40ns

consistent results:

Net effective space charge

Shape of current pulses can be explained by net effective space charge in diamond bulk

Linear Model Determination of N effective

- Non-zero field region increases with V^{1/2}
- **#** For V=Vc : holes cloud arrive
- No electron signal below Vc (for this injection configuration)
- % Sign of increase/decrease ->
 NEGATIVE space charge
- ₭ Vc = 96V
 ₭ N_{eff} = 2.8 × 10¹¹ cm⁻²

Further considerations regaring space charge

- H Linear field maybe a good approximation for high fields but not at low fields (near Vc)
 - Flat region in current curve at end
 - Extrapolation for Q=0 yields 25V
- # At V close to Vc the field may e.g. depend on combination of generation current and trapping center density which can lead to a non-uniform space charge
- Space charge may depend on detector bias voltage
 Electron current increase stronger at higher voltages

Comparion with Simulation:

- 🔀 Simulation
 - Uses charge drift through detector
 - Electronics transfer function
 - Material parameters as measured (lifetime, velocity)
- Can achieve good approximation of data
- ₭ Vary N_{eff}

Conclusion

- # TCT allows to measure several charge transport properties in a single characterization and seems (to me) ideally suited for further additional studies of CVD properties.
- 🔀 It allows to measure
 - Drift velocity
 - Lifetime
 - + Space charge & characterize the field configuration inside the diamond
- 🔀 We measure
 - Lifetimes of approx. 40ns >> transit time at typical detector operation
 - \diamond Saturation velocity of 1 (e) to 1.4 (h) x 10⁷ cm/s
- # Propose to continue measurements with
 - Further scCVD samples in the next future (sample comparison)
 - Study other dependence's (e.g. surface and contact preparation)