Vertex Detectors with CVD Diamond

Recent Developments

Alexander Oh, CERN

NoRHDia meeting, 5-6 July '04

Alexander Oh, CERN

100µm

<u>Outline</u>

- Introduction
- Particle Detector Prototypes
 - Strip Detectors
 - Pixel Detectors
- Applications in HEP
- Summary

- RD42 Collaboration
- University Bonn
- BaBar, SLAC
- CMS, CERN

Introduction

- Motivation
 - LHC and SLHC radiation levels at inner tracking layers O(10¹⁵ n cm⁻²)
 - Detectors close to IP or at low rapidity
 - Vertexdetector
 - Beam monitoring
- Some advantageous properties of Diamond compared to Silicon :

Introduction: Diamond properties

Property	Diamond	Silicon
band gap	5.47	1.12
mass density [g/cm ³]	3.5	2.33
dielectric constant	5.7	11.9
resistivity [Ωcm]	>1011	2.3e5
breakdown [kV/cm]	1e320e3	300
e mobility [cm ² /Vs]	2150	1350
h mobility [cm ² /Vs]	1700	480
therm. conductivity [W / cm K]	1020	1.5
radiation length [cm]	12	9.4
Energy to create an eh-pair [eV]	13	3.6
ionisation density MIP [eh/µm]	36	89
ion. dens. of a MIP [eh/ 0.1 $\%$ X ₀]	450	840

- Low \mathcal{E} -> low capacitance
- Low $I_{leak} \rightarrow$ low noise
- Room temperature operation
- Fast signal collection time

-MIP signal 1.9 smaller for same X_0 -Collection efficiency < 100%

Introduction

- Diamond material
 - Synthetic diamond
 - Chemical Vapor Deposition
 - Polycrystalline films

 Recently: large homo-epitaxic mono-crystalline films

Diamant_DESS8_Seite-gekippt

90.hw

Introduction

Principle of detector operation

 $\begin{aligned} \mathbf{Q} &= \frac{\mathrm{d}}{\mathrm{t}} \mathbf{Q}_{0} & \text{collected charge} \\ \mathbf{d} &= \mu \mathbf{E} \tau & \text{"collection distance"} & \begin{array}{l} \mu &= \mu_{e} + \mu_{h} \\ \tau &= \frac{\mu_{e} \tau_{e} + \mu_{h} \tau_{h}}{\mu_{e} + \mu_{h}} \end{aligned}$

collection efficiency

Particle Detector Prototypes

NoRHDia meeting, 5-6 July '04

Particle Detector Prototypes

- Dot detectors
 - Characterization
- Strip detectors
 - Tracking
 - Slow VA2 and fast LHC electronics
- Pixel detectors
 - Tracking
 - CMS and Atlas patterns / electronics

Strip Detectors

Principle

• A sample with a Collection Distance of 130 μ m was perpared with a patterned metallisation to serve as a position sensitive detector.

• Principle:

• The charge signal is picked up by the strip(s) next to the particle track.

• The charge is shared by multiple strips if the charge collection is incomplete.

• The position of the particle track can be reconstructed by calculating the charge weighted impact point (Center of Gravity)

CERN test-beam Setup for Diamond Telescope

- ✤ 100 GeV/c pion/muon beam
- ♦ 7 planes of CVD diamond strip sensors each 2cm × 2cm
- \bullet 50 μ m pitch, no intermediate strips \rightarrow new metalisation procedure
- ♦ 2 additional diamond strip sensors for test
- Several silicon sensors for cross checks
- Strip Electronics (2 μ sec) \rightarrow ENC \approx 100e + 14e/pF

• Two planes of the Diamond Telescope

NoRHDia meeting, 5-6 July '04

Residual versus Track Position

- ♦ Uniform signals on all strips → new metalisation
- Pedestal separated from "0" on all strips
- \bullet 99% of entries above 2000 e
- Mean signal charge \sim 8640 $e \rightarrow$ new metalisation
- MP signal charge \sim 6500 e

Uniformity in Charge Collection of CVD Diamonds

•Measured with MIPS

•Similar patterns observed as with photon beam measurement

Irradiated Strip Detectors

35% improvement in resolution

NoRHDia meeting, 5-6 July '04

15% loss of S/N

Irradiated Strip Detectors

Pion Irradiation

- Next Step:
- Biased intermediate strips to benefit from charge sharing.
- Should improve resolution.

Pixel Detectors

Diamond Pixel Detectors

ATLAS FE/I Pixels (AI)

- Atlas pixel pitch $50\mu m \times 400\mu m$
- ✤ Over Metalisation: Al
- Lead-tin solder bumping at IZM in Berlin

CMS Pixels (Ti-W)

- + CMS pixel pitch $125\mu m \times 125\mu m$
- ✦ Metalization: Ti/W
- ✤ Indium bumping at UC Davis
- \rightarrow Bump bonding yield \approx 100 % for both ATLAS and CMS devices

New radiation hard chips produced this year.

Diamond Pixel Detectors

Results from an ATLAS pixel detector

1 Chip Assembly

2x8 Chip Assembly (Module)

5th Int'l STD Symposium June 14, 2004 - Hiroshima, Japan

Recent Advances in Diamond Detector Development (page 19)

Harris Kagan Ohio State University

NoRHDia meeting, 5-6 July '04

Diamond Pixel Detectors

Results from a CMS pixel detector

Efficiency vs Pixel

5th Int'l STD Symposium June 14, 2004 - Hiroshima, Japan

Recent Advances in Diamond Detector Development (page 22)

Harris Kagan Ohio State University

NoRHDia meeting, 5-6 July '04

Results from Atlas Diamond Pixel Detectors

Spatial Resolution – Long Direction

- Efficiency = 80%
- Resolution = digital

Results from Atlas Diamond Pixel Detectors

Tommaso Lari (INFN) Alexander Oh (CERN) Norbert Wermes (University Bonn)

- Large track residuals
- Non-uniformity of response qualitatively reproduces by modeling

• Task: Find a simple model to explain the peculiarities of CVD diamond

- priming
- polarisation
- non-uniformities

• First Step: Make an assumption about the spatial distribution of carrier lifetime

- lifetime correlates to the crystallite structure
- lifetime depends on the distance to the nearest grainboundary
- lifetime can be parametrized by

• Second Step: Develop a simple growth model to approximate the growth morphology found in CVD diamond

• in 3D crystallites start to grow with equal probability with a given seed density

- the space points claimed by concurring seeds are conquered randomly
- the probability to successfully claim is weighted with the crystallites size

S. Waidmann, Inst. f. Festkorper und Werkstofforschung, Dresden

• The Growth Generator can be adjusted for different lateral growth speeds:

k=0.5

k=0.8

k=0.9

 $k=2 v_{vert} v_{lateral}^{-1}$

NoRHDia meeting, 5-6 July '04

• The carrier drift process is simulated for single carriers (electrons and holes) accordingly to the lifetime distribution.

- Recombination and trapping is distinguished.
- The electric field due to trapped charge is calculated.
- The drift path for each carrier is determined by the local electric field and thermal diffusion with $1\mu m$ resolution.

polarisation field

trapped electrons

trapped holes

• Recombination and trapping is distinguished, priming effect can be modelled....

Material Studies

 Non Uniformities qualitatively reproduced by modeling

Alexander Oh, CERN

- Comparison of track residuals in the model with and without grain structure
- Model with grain structure can qualitatively reproduce residuals observed with diamond pixel detectors.

Results from CMS Diamond Pixel Detectors

- Efficiency = 89%
- Resolution = digital

Applications in HEP

NoRHDia meeting, 5-6 July '04

Applications in HEP

- Vertex detectors with CVD Diamond are not considered yet as an option for LHC.
- For Beam monitoring CVD Diamond is an option for CMS and ATLAS at the LHC.
- BaBar and Belle test already CVD Diamond in their beam monitoring system.

Beam monitoring

- For Silicon Vertex systems careful monitoring is crucial.
- Inherently, beam monitors have to be radiation hard.
- Abort Beam when monitors signal dangerous beam conditions.
 - False signals must be avoided.
 - Monitor must be reliable.
- Requirements on the monitoring system depend on the accelerator and vertex system.

CMS beam monitor

- Diamond activity started.
- Possible location of Beam Condition Monitors (BCM) in CMS.

Mika Huhtinen, CERN

NoRHDia meeting, 5-6 July '04

BCM: First test beam program

Beam:

Test of response to beam loss: T7 PS testbeam

Train of 40ns-wide bunches from CERN PS with 262ns gap Used to emulate an asynchron beam abort at CMS

Beam intensity:

~8x10¹¹protons per bunch (24GeV)

~4x10¹⁰ protons/cm²/bunch at the centre of the beam spot

 \sim 1x10⁸ protons/cm²/bunch in the halo

Samples:

Polycrystalline diamond samples for response to conditions in CMS/ATLAS

BCM tests done by Vladimir Cindro Luis Fernandez Hernando Christoph Ilgner Alick Macpherson Alexander Oh Heinz Pernegger Terry Pritchard Bob Stone Steve Worm

Read out through 16m long RG58 cable connected directly to diamond (no electronics close to beam).

NoRHDia meeting, 5-6 July '04

BCM Preliminary Results

Diamond signal response to high intensity bunch

Almost identical diamond response to PS beam monitor response (pulse length 40ns)

NoRHDia meeting, 5-6 July '04

BCM Preliminary Results

Diamond signal response to high intensity bunch

Bunch train of 7 bunches resolved
Signal stable over bunch train if electric field can be maintained

- For production Si PIN diodes are used.
 - $U_{\text{bias}} = 50V$, I_{leak} increases with 1nA/krad
 - After 100fb⁻¹, noise 50µA, signal 10nA
- Since 4 month CVD diamond beam monitor prototype installed
 - Package must fulfill space constraints
 - Robustness

NoRHDia meeting, 5-6 July '04

• Promising results!

NoRHDia meeting, 5-6 July '04

Leakage Current in BaBar

- Diamonds have received 250kRad ⁶⁰Co plus 250kRad while installed
- No observed change in leakage current (<0.1nA) or fluctuations (30pA)
- Data directly from BaBar SVTRAD system
- Electronic noise (\approx 0.5nA) substracted off

Harris Kagan Ohio State University 42nd INFN Eloisatron Workshop Oct. 1, 2003 - Erice, Italy

Very Fast Time Scale (ns) in BaBar

- Use a fast amplifier to look at PIN-diode and diamond signals
- Trigger on the PIN-diode signal
- Look at fast spikes: red = diamond, black = PIN-diode

Diamond is fast enough for Fast Abort

NoRHDia meeting, 5-6 July '04

Alexander Oh, CERN

Harris Kagan Ohio State University 42nd INFN Eloisatron Workshop Oct. 1, 2003 - Erice, Italy

Summary

- Proto-type Detectors
 - Dots / Strips / Pixel
 - Good resolution and S/N 8:1 obtained with radhard electronics
 - Intermediate Strips are tested this July
- Radiation Hardness
 - 50% loss of S/N after 2.9 x 10¹⁵ pions/cm²
 - No loss seen for EM radiation up to 10MGy.
 - Will be repeated with newest samples

Summary

- Application in HEP
 - Beam monitoring in BaBar, Belle
 - Option for CMS and ATLAS Beam monitoring
- Future
 - Mono-crystalline CVD diamond
 - Continue research on poly-crystalline diamond to reach 300µm collection distance.