

SC-CVD growth and diamond devices

Milos Nesládek^{1,3}, Ken Haenen¹, Satoshi Koizumi², Philippe Bergonzo³

¹Limburgs Universitair Centrum, Belgium; & IMEC-IMOMEC vzw, Belgium; ²National Institute for Materials Science, Japan ³CEA, Saclay, France

Diamond the only wide bandgap high mobility materia

MW-PACVD SET up

Key issue

preparation of high quality CVD diamond films

equivalent to type IIa natural diamond

with - low intrinsic defect concentrations

- active incorporation of dopants

Growth by a step flow: coalesence of macrosopic steps

Surface pretreatment,

Substrate quality, missorientation angle

Step- growth & hydrogenation

- terraces separated by monoatomic steps.
- 2 x 1 reconstruction:
- the domains are rotated relative to each other by 90°.
- clearly are the "cigars" on the flat area's. These are the bright lines.
- Distance between the "cigars" is 5.0Å.
- Height = 2\AA .

High quality CVD diamond single crystal layer 50 μ m thick 4% CH₄ in H₂, 150 torr

SC-CVD growth

p: 160 torr 5%CH4 in H₂ T: 850°C 250 μm

- Low growth rate 0.2-0.3 μm/hour: high quality surfaces
- High growth rate: 10-20 μm/hour: optimisation of hillock (H) and unepitaxial crystal (UC) density (Surface treatments,growth conditions)

DOPING OF SINGLE CRYSTAL DIAMOND

Phosphorous doped {111} homoepitaxial diamond Boron doped {111} and {100} oriented diamond

pn-junction

Active electronic devices,

high power, high frequencies, high temperature operation Ultraviolet LED 235 nm (Koizumi et al Science 2001)

Solar blind UV sensor

Optimization of of *n*-type diamond - carrier mobility

Comparison of IMO (Be) and NIMS(Japan) results

NNO **Carrier mobility of (111) n-type diamond** Growth at IMO, ASTeX, 5kW reactor ■ P: 600 – 800 W $N_{\rm P}$: 3x10¹⁶ – 5x10¹⁹ cm⁻³ p: 100-120 Torr μ : $\approx 400 \text{ cm}^2 \text{V}^{-1} \text{s}^{-1}$ ■ T: 860 – 880 °C ■ CH₄/H₂: 0.05 – 0.15 % ■ PH₃/CH₄: 2 – 2000 ppm ■ TMB/CH4: 2-2000ppm Temperature [K] 00 00 00 00 00 00 00 00 500 2º 400 10¹⁷ 300 Data: M241102EPI E

Fourier Transform Photocurrent Spectroscopy

 $PH_3-H_2-CH_4$

P6-doped CVD diamond layer, 15µm S.Koizumi: 400ppm gas phase, 0.5 W IMO P6: 800ppm gas phase, 3 kW

I-V characteristics of diamond *pn*-junction diode

PARTNER IN DE UNIVERSITEIT LIMBURG

- « turn-on voltage: 4.5~5 V « breakdown voltage: > 100 V « rectification ratio: > 10¹⁰ at +/-10V
- « Ideality factor (n): ~3.5 -> 1.5 (500°C)
- « large series resistance: $\sim 10^5 \Omega$

Image: Sector Spot Magn Det WD Image: Sector Spot Magn Det WD 10 µm Soc V Spot Magn Det WD Image: Sector Spot Magn Det ND 10 µm Soc V Spot Magn Det WD Image: Sector Spot Magn Det ND 10 µm Soc V Spot Magn Det ND 10 µm 10 µm

Polished substrate: preferential (110) α = angle between the growth

surface and and the crystal plane

Substrate and grain orientation!

Nigo

CVD pn junction type detector for UV sensor for space applications (LYRA-PROBA II)

Comparison with "undoped" detector devices:

- 1) High collection efficiency of generated charge
- 2) Temperature stability, linearity
- 3) Fast response (no persistent photocurrents ?)
- 4) No priming ?
- 5) 3D processing

Optimisation of the homogeneity, processing and contacts on 5mm HPHT substrates

IV and photoresponse characteristics of diamond pn junction sensors

Responsivity of detectors in XUV

Tests XUV-UV BESSY/ NIST

Nilo

Wavelength (nm)

Response to solar XUV spectra (3 mm aperture)

Summary

SC-CVD diamond growth

- Optimisation of SC CVD diamond growth for detectors applications
- (100) surfaces: free standing CVD diamond plates
- (111) surfaces: n-type doping and junction fabrications

PN junction optimsation

- Reproducible P-doping on {111} surfaces, a smooth surface, mobilities 400 - 500 cm² V⁻¹s⁻¹ for N_d = 10¹⁶⁻¹⁷ cm⁻³)
- pn-junctions with good rectification ;
- n-type polycrystalline diamond and pn junctions: pn-junctions with good rectificatio and diode ideality factor of n_{RT}=2.9. Dx defect (influencing I-V characteristics),

UV detectors:

- UV- XUV Responsivities close to Si diode
- Excellent solar blidness
- Fast and stable response

IMECNOLOGY

www.imec.be

Worldwide collaboration with more than 450 companies and institutes.

IMEC - Kapeldreef 75 - B-3001 Leuven - Belgium - Tel. +32 16 281211 - Fax +32 16 229400 - www.imec.be

FIB prepared TEM polycrystalline junction

Hall measurements on P-doped IMO films

Large area poly CVD diamond pn-junctions

Lyra Detector design:

Stable oxidised surface

Previous work on UV detectors: Surface treatments on Poly CVD diamond R. Jackman & P; Bergonzo: Semiconductors and Semimetals 2004

Synchrotron measurements: solar blindness, response time, S/N ratio

50 μm litogrpaphy Pure S/N ratio (1-2 db at 1μW; 200 nm)

Nigo

BESSY Measurements - synchrotron

Time response Photoreistor

π– doping
High responsivity
Slow response
(traps modelling)
B 0.37eV,Dx 0.9eV, N1.7eV

Epi Layer optimisation No B doping Electrons ? N, P... low incorporation In (100)

Time response < 1 μ sec

Photoresistor optimisation

Optimised photoresponse of epitaxial CVD diamond photoresistor detector (5mm)

Response time < 10 μsec 5V; dark current < 5pA 1 μm litography

Wavelength (nm)

- 1. Intruduction: detectors onboard ESA Satellite Proba II.
- 2. Growth of epitaxail n-type CVD diamond
 - Growth
 - Mobilities
 - Electronic structure
- 3. Growth of polycrystalline n-type CVD diamond
 - Preferred orientation
 - Mobility (Hall)
 - CL, electronic structure
- 4. Devices
 - Epitaxial and polycrystalline diodes: UV "solar blind" sensors, ...

NA CO

The electronic structure of P (PC – PTIS)

 Oscillatory PC and PTIS maxima provide complementary information about the excited states of phosphorous

Bandstructure and phonon dispersion curves

Fourier Transform Photocurrent Spectroscopy

M. Vaněček et al., APL 80 (2002) 719

- FTIR spectrometer
- External beam output
- External detector
- Quartz, CaF₂ and KBr beamsplitters (IR – VIS)
- Stable voltage source
- Sample in LHe-LN cryostat (77K – 500K)

LIMBURGS UNIVERSITAIR CENTRUM PARTNER IN DE UNIVERSITEIT LIMBURG

Normalized FTPS signal (a.u.):

signal from the sample normalized by the signal from spectrally independent pyroelectric detector.

Nigo

The electronic finestructure of P

Gheeraert et al., DRM 10 (2001) 444

Nucleation surface

PARTNER IN DE UNIVERSITEIT LIMBURG