

Low Temperature Optical and Electronic Properties of CVD Diamond for Detector Applications

Christoph E. Nebel

Diamond Research Center, AIST, Tsukuba, Japan

Diamond is ULTRA COLD

Assumptions: T = 300 K, $v_0 = 10^{13} \text{ 1/s}$

<u>Outline:</u>

I) Optical properties

II) Electronic Properties:

Conductivity Mobility Drift Velocity in Diamond: Holes Defects (H1 center) Deep trapping of carriers

I. Optical Properties

Transition with phonon absorption ($hv > E_g - E_p$)

$$\alpha_{a}(h\nu) = \frac{A(h\nu - E_{g} + E_{p})^{2}}{exp\left(\frac{E_{p}}{kT}\right) - 1}$$

Transition with phonon emission ($hv > E_g + E_p$)

$$\alpha_{e}(h\nu) = \frac{A(h\nu - E_{g} - E_{p})^{2}}{1 - exp\left(-\frac{E_{p}}{kT}\right)}$$

For $hv > E_g + E_p$ both absorptions take place:

 $\alpha(h\nu) = \alpha_{a}(h\nu) + \alpha_{e}(h\nu)$

Several types of phonons involver:

- one longitudinal acoustic phonon
- Two transversal acoustic phonons

Temperature dependent absorption

Diamond parameter

$$\mathsf{E}_{g}(\mathsf{T}) = \mathsf{E}_{g}(\mathsf{T}=0) - \frac{\alpha \mathsf{T}^{2}}{\mathsf{T}+\beta}$$

 $E_g(T=0)=5.48$ α = -1.979 β = -1437

Temperature dependent variation of the band gap of Diamond

Diamond Research Center

II. Electronic Properties: Conductivity

All undoped diamond layers (lb, IIa and CVD) are n-type:

Conductivity of CVD diamond is governed by nitrogen doping (P1-center):

$$E_{act} = 1.7 \text{ eV}$$

Diamond Research Center

Mobility

Textbook example: Temperature dependent mobility in n-type Si (S.M. Sze:Semiconductor Devices)

The band structure and the phonon bands in diamond

Fig. 1. Diamond. Band structure calculated by an ab intio LCAO method [84C].

Hole Mobilities

T^{-3/2}: acoustic phonon scattering

T^{-2.8}: optical phonon scattering

Isberg et al. : time-of-flight on undoped CVD diamond (Science 297, p. 1670 (2002): 3800 cm²/Vs) Reggiani: Time-of-flight on undoped natural diamond Dean and Konorova: Hall Mobilities Dr. Okushi et al. AIST: Hall effect on boron doped CVD diamond

CVD Hole Mobility Limitations: Scattering due to residual impurities like Fe and Mo

Scattering at ionized impurities:

$$\mu \propto \left(\!m^*\right)^{\!\!1/2} \frac{T^{3/2}}{N_i}$$

Electron Mobilities in natural and P-doped Diamond:

T^{-3/2}: acoustic phonon scattering

Isberg et al.,: Time-of-flight in undoped CVD diamond (Science 297, p. 1670 (2002): 4500 cm²/Vs)

Nava: Time-of-flight on natural undoped diamond Konorova: Hall effect Redfield: Hall effect

Koizumi et al.: Hall effect on Phosphorus doped diamond

The saturation velocity limitation:

Better:

Energy relaxation	$\frac{d\Delta E}{dt} = eFv_{s} - \frac{E_{phonon}}{\tau_{e}}$
Impuls relaxation	$\frac{d(mv_s)}{dt} = eF - \frac{mv_s}{\tau_m}$
For steady state conditions:	$\frac{d\Delta E}{dt} = \frac{d(mv_s)}{dt} = 0$
For only on scattering process (one phonon)	$\tau_e = \tau_m$
Saturation velocity:	$v_s = \left(\frac{E_{phonon}}{m^*}\right)^{1/2}$

$$v_s = 3.8 \times 10^7$$
 cm/s
for 165 meV and m = 0.2 m_o

$$v_{sat} = \left[\frac{8E_{opticalphonon}}{3\pi m^{*}}\right]^{1/2}$$

Drift Velocity in Diamond: Holes

Drift Velocity in Diamond: Electrons

Saturated drift velocity: 1.5x107 cm/s

Anisotropy: multivalley band structure

F. Nava et al., Sol. Stat. Com. 33 (1980) p. 475

Drift velocity

Defects: H1 Center g = 2.0028

Typical Density: 5x10¹⁸ cm⁻³

Zhou et al. PRB 54 (1996) p. 7881

N. Mizuochi et al. DRM in print.

Carbon hyperfine interaction with Hydrogen Distance: 1.9 to 2.3 A

Defect Model: X. Zhou, G.D. Watkins et al. PRB 54 (1996) p. 7881

Deep trapping of carriers

Hecht equation: $Q(t) = Q_o \frac{\mu \tau E}{L} \left[1 - exp\left(-\frac{t}{\tau}\right) \right]$

Deep trapping lifetime

$$\tau = \frac{1}{N_{D} v_{th} S_{cross}}$$

Capture cross section S_{cross}:

$$10^{-14} \text{ cm}^2 - 10^{-15} \text{ cm}^2$$

Ionized Impurities:

$$\mathsf{E}(\mathsf{r}) = \frac{1}{4\pi\varepsilon_{\rm o}\varepsilon_{\rm r}}\frac{1}{\mathsf{r}^2}$$

 ϵ_r in diamond much smaller!

 ϵ_r (Diamond) = 5.7 ϵ_r (Si) = 11.9

Temperature dependent capture cross sections for 7 deep levels in GaAs and two in GaP (D.V. Lang)

Fig. 3.21. Capture cross section (denoted here by σ) as a function of inverse temperature for seven deep levels in GaAs and two in GaP

Time-of-flight setup

Deep trapping of carriers (electrons and holes) in undoped CVD diamond

Model:

pos. applied el. field

Diamond Research Center

X

After laser exposure the internal field is reversed, giving rise to a current in oposit direction

short circuit illumination

The same features for electrons and holes: Traps or defect, which can be occupied by electrons and holes!

