Low Temperature
Optical and Electronic Properties
of
CVD Diamond
for Detector Applications

Christoph E. Nebel
Diamond Research Center, AIST, Tsukuba, Japan
Diamond is ULTRA COLD

Assumptions: $T = 300$ K, $\nu_o = 10^{13}$ 1/s
Outline:

I) Optical properties

II) Electronic Properties:

 Conductivity
 Mobility
 Drift Velocity in Diamond: Holes
 Defects (H1 center)
 Deep trapping of carriers
I. Optical Properties

Transition with phonon absorption ($h\nu > E_g - E_p$)

$$\alpha_a(h\nu) = \frac{A(h\nu - E_g + E_p)^2}{\exp\left(\frac{E_p}{kT}\right) - 1}$$

Transition with phonon emission ($h\nu > E_g + E_p$)

$$\alpha_e(h\nu) = \frac{A(h\nu - E_g - E_p)^2}{1 - \exp\left(-\frac{E_p}{kT}\right)}$$

For $h\nu > E_g + E_p$ both absorptions take place:

$$\alpha(h\nu) = \alpha_a(h\nu) + \alpha_e(h\nu)$$
Schematic Absorption

Several types of phonons involved:

- one longitudinal acoustic phonon
- Two transversal acoustic phonons
Temperature dependent absorption

Diamond parameter

\[E_g(T) = E_g(T = 0) - \frac{\alpha T^2}{T + \beta} \]

\[E_g(T=0) = 5.48 \]
\[\alpha = -1.979 \]
\[\beta = -1437 \]
Temperature dependent variation of the band gap of Diamond

From 0 K to 300 K:

$\Delta E = 15 \text{ meV}$
Near band edge absorption

Phonon coupling with excitons:

LO = 163 meV

TA = 87 meV

TO = 141 meV

R. Sauer, in „Thin Film Diamond, Elsevier 2003

$E_{Gx} =$ exciton threshold energies
(5.406 eV)

$E_g = 5.467$ eV
Typical absorption spectra
II. Electronic Properties: Conductivity

All undoped diamond layers (Ib, IIa and CVD) are n-type:

Conductivity of CVD diamond is governed by nitrogen doping (P1-center):

\[E_{act} = 1.7 \, \text{eV} \]
Mobility

Textbook example: Temperature dependent mobility in n-type Si (S.M. Sze: Semiconductor Devices)
The band structure and the phonon bands in diamond

Fig. 1. Diamond. Band structure calculated by an ab initio LCAO method [84C].
Hole Mobilities

- $T^{-3/2}$: acoustic phonon scattering
- $T^{-2.8}$: optical phonon scattering

Isberg et al.: time-of-flight on undoped CVD diamond
(Science 297, p. 1670 (2002): 3800 cm2/Vs)

Reggiani: Time-of-flight on undoped natural diamond

Dean and Konorova: Hall Mobilities

Dr. Okushi et al. AIST: Hall effect on boron doped CVD diamond

Why different phonon scattering?
CVD Hole Mobility Limitations:
Scattering due to residual impurities like Fe and Mo

Scattering at ionized impurities:

$$\mu \propto \left(m^* \right)^{1/2} \frac{T^{3/2}}{N_i}$$
Electron Mobilities in natural and P-doped Diamond:

$T^{-3/2}$: acoustic phonon scattering

Isberg et al.,: Time-of-flight in undoped CVD diamond
(Science 297, p. 1670 (2002): 4500 cm2/Vs)

Nava: Time-of-flight on natural undoped diamond
Konorova: Hall effect
Redfield: Hall effect

Koizumi et al.: Hall effect on Phosphorus doped diamond
The saturation velocity limitation:

Energy relaxation
\[\frac{d\Delta E}{dt} = eFv_s - \frac{E_{phonon}}{\tau_e} \]

Impulse relaxation
\[\frac{d(mv_s)}{dt} = eF - \frac{mv_s}{\tau_m} \]

For steady state conditions:
\[\frac{d\Delta E}{dt} = \frac{d(mv_s)}{dt} = 0 \]

For only one scattering process (one phonon)
\[\tau_e = \tau_m \]

Saturation velocity:
\[v_s = \left(\frac{E_{phonon}}{m^*} \right)^{1/2} \]
\[v_s = 3.8 \times 10^7 \text{ cm/s} \]
for 165 meV and \(m = 0.2 \text{ m}_o \)

Better:
\[v_{sat} = \left[\frac{8E_{opticalphonon}}{3\pi m^*} \right]^{1/2} \]
Drift Velocity in Diamond: Holes

Saturation hole velocity: 1.1×10^7 cm/s

Reggiani et al, PRB 23 (1981) p. 3050
Drift Velocity in Diamond: Electrons

Saturated drift velocity: 1.5×10^7 cm/s

Anisotropy: multivalley band structure

Drift velocity

Drift velocity: \(v_D = F\mu = F\frac{e}{m}\tau \)

Scattering time: \(\tau = \tau_0 \left(\frac{\varepsilon}{kT} \right)^r \)

- \(r = -0.5 \) acoustic deformation potential scattering
- \(r = +3/2 \) ionized imurity scattering

Reggiani et al, PRB 23 (1981) p. 3050
Defects: H1 Center $g = 2.0028$

Homoepitaxial single crystalline diamond:

Typical Density: $5 \times 10^{18} \text{ cm}^{-3}$

Zhou et al. PRB 54 (1996) p. 7881

N. Mizuochi et al. DRM in print.
Carbon hyperfine interaction with Hydrogen
Distance: 1.9 to 2.3 Å
Deep trapping of carriers

Hecht equation:

\[Q(t) = Q_0 \frac{\mu t E}{L} \left[1 - \exp\left(-\frac{t}{\tau} \right) \right] \]

Deep trapping lifetime

\[\tau = \frac{1}{N_D v_{th} S_{cross}} \]

Capture cross section \(S_{cross} \):

\(10^{-14} \text{ cm}^2 - 10^{-15} \text{ cm}^2 \)

Ionized Impurities:

\[E(r) = \frac{1}{4\pi\varepsilon_0 \varepsilon_r} \frac{1}{r^2} \]

\(\varepsilon_r \) in diamond much smaller!

\(\varepsilon_r(\text{Diamond}) = 5.7 \)

\(\varepsilon_r(\text{Si}) = 11.9 \)
Temperature dependent capture cross sections for 7 deep levels in GaAs and two in GaP (D.V. Lang)

Fig. 3.21. Capture cross section (denoted here by σ) as a function of inverse temperature for seven deep levels in GaAs and two in GaP.
Time-of-flight setup
Deep trapping of carriers (electrons and holes) in undoped CVD diamond

![Graph showing current (A) vs. time (s) under different electric fields (V/cm)].

- **A**: F = 1.2x10³ V/cm
- **B**: F = 0 V/cm
Model:

pos. applied el. field

Laser Excitation

E

E_c

E_v

Metal

Diamond

Metal

X

v
After laser exposure the internal field is reversed, giving rise to a current in the opposite direction.

short circuit illumination
The same features for electrons and holes: Traps or defect, which can be occupied by electrons and holes!

(a) neg. applied el. field

(b) short circuit illumination

(c) pos. applied el. field

(d) short circuit illumination